Ekmel Ozbay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8595142/publications.pdf

Version: 2024-02-01

368 14,314 51 110
papers citations h-index g-index

374 374 374 13195
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science, 2006, 311, 189-193.	12.6	4,129
2	Negative refraction by photonic crystals. Nature, 2003, 423, 604-605.	27.8	675
3	Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomedical Microdevices, 2008, 10, 321-328.	2.8	359
4	Investigation of magnetic resonances for different split-ring resonator parameters and designs. New Journal of Physics, 2005, 7, 168-168.	2.9	270
5	Equivalent-Circuit Models for the Design of Metamaterials Based on Artificial Magnetic Inclusions. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 2865-2873.	4.6	224
6	Chiral metamaterials with negative refractive index based on four "U―split ring resonators. Applied Physics Letters, 2010, 97, .	3.3	199
7	Diodelike Asymmetric Transmission of Linearly Polarized Waves Using Magnetoelectric Coupling and Electromagnetic Wave Tunneling. Physical Review Letters, 2012, 108, 213905.	7.8	195
8	A transparent $90\hat{A}^o$ polarization rotator by combining chirality and electromagnetic wave tunneling. Applied Physics Letters, 2012, 100, .	3.3	193
9	Subwavelength resolution with a negative-index metamaterial superlens. Applied Physics Letters, 2007, 90, 254102.	3.3	185
10	Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. Optics Letters, 2011, 36, 1653.	3.3	170
11	Experimental observation of true left-handed transmission peaks in metamaterials. Optics Letters, 2004, 29, 2623.	3.3	160
12	Electrically small split ring resonator antennas. Journal of Applied Physics, 2007, 101, 083104.	2.5	146
13	Leakage current by Frenkel–Poole emission in Ni/Au Schottky contacts on Al0.83In0.17N/AlN/GaN heterostructures. Applied Physics Letters, 2009, 94, .	3.3	132
14	Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration. Optics Express, 2011, 19, 14260.	3 . 4	117
15	Electrically switchable metadevices via graphene. Science Advances, 2018, 4, eaao1749.	10.3	117
16	Solar-blind AlGaN-based p-i-n photodetectors with high breakdown voltage and detectivity. Applied Physics Letters, 2008, 92, .	3.3	111
17	Observation of negative refraction and negative phase velocity in left-handed metamaterials. Applied Physics Letters, 2005, 86, 124102.	3.3	108
18	Asymmetric transmission of linearly polarized waves and polarization angle dependent wave rotation using a chiral metamaterial. Optics Express, 2011, 19, 14290.	3 . 4	105

#	Article	IF	CITATIONS
19	Buffer optimization for crack-free GaN epitaxial layers grown on Si(1 1 1) substrate by MOCVD. Journal Physics D: Applied Physics, 2008, 41, 155317.	2.8	99
20	Complementary chiral metamaterials with giant optical activity and negative refractive index. Applied Physics Letters, $2011, 98, .$	3.3	99
21	Solar-blind AlGaN-based Schottky photodiodes with low noise and high detectivity. Applied Physics Letters, 2002, 81, 3272-3274.	3.3	97
22	Strong Light–Matter Interaction in Lithography-Free Planar Metamaterial Perfect Absorbers. ACS Photonics, 2018, 5, 4203-4221.	6.6	96
23	High-performance visible-blind GaN-based p-i-n photodetectors. Applied Physics Letters, 2008, 92, .	3.3	89
24	Dislocation-governed current-transport mechanism in (Ni/Au)–AlGaN/AlN/GaN heterostructures. Journal of Applied Physics, 2009, 105, .	2.5	89
25	Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture. Applied Physics Letters, 2004, 85, 1098-1100.	3.3	87
26	Design of Miniaturized Narrowband Absorbers Based on Resonant-Magnetic Inclusions. IEEE Transactions on Electromagnetic Compatibility, 2011, 53, 63-72.	2.2	82
27	Comparison of the transport properties of high quality AlGaN/AlN/GaN and AlInN/AlN/GaN two-dimensional electron gas heterostructures. Journal of Applied Physics, 2009, 105, .	2.5	81
28	Effect of disorder on magnetic resonance band gap of split-ring resonator structures. Optics Express, 2004, 12, 5896.	3.4	80
29	Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth. Photonics Research, 2018, 6, 168.	7.0	78
30	Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture. Optics Express, 2005, 13, 1666.	3.4	77
31	AlxGa1â^xN-based avalanche photodiodes with high reproducible avalanche gain. Applied Physics Letters, 2007, 90, 163506.	3.3	77
32	Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance. Optics Express, 2012, 20, 2587.	3.4	77
33	Radiation properties of a split ring resonator and monopole composite. Physica Status Solidi (B): Basic Research, 2007, 244, 1192-1196.	1.5	76
34	Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity. Optics Express, 2017, 25, 27624.	3.4	76
35	Focusing of electromagnetic waves by a left-handed metamaterial flat lens. Optics Express, 2005, 13, 8753.	3.4	75
36	Experimental observation of left-handed transmission in a bilayer metamaterial under normal-to-plane propagation. Optics Express, 2006, 14, 8685.	3.4	73

#	Article	IF	Citations
37	Temperature dependent negative capacitance behavior in (Ni/Au)/AlGaN/AlN/GaN heterostructures. Journal of Non-Crystalline Solids, 2010, 356, 1006-1011.	3.1	70
38	Beaming of light and enhanced transmission via surface modes of photonic crystals. Optics Letters, 2005, 30, 3078.	3.3	68
39	Unidirectional transmission in non-symmetric gratings containing metallic layers. Optics Express, 2009, 17, 13335.	3.4	68
40	One-way transmission through the subwavelength slit in nonsymmetric metallic gratings. Optics Letters, 2010, 35, 2597.	3.3	68
41	Highly directive radiation from sources embedded inside photonic crystals. Applied Physics Letters, 2003, 83, 3263-3265.	3.3	65
42	Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit. Applied Physics Letters, 2011, 98, .	3.3	65
43	Large-Area, Cost-Effective, Ultra-Broadband Perfect Absorber Utilizing Manganese in Metal-Insulator-Metal Structure. Scientific Reports, 2018, 8, 9162.	3.3	65
44	Compact size highly directive antennas based on the SRR metamaterial medium. New Journal of Physics, 2005, 7, 223-223.	2.9	63
45	High-speed visible-blind GaN-based indium–tin–oxide Schottky photodiodes. Applied Physics Letters, 2001, 79, 2838-2840.	3.3	62
46	Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber. Nanophotonics, 2019, 8, 823-832.	6.0	60
47	The persistent photoconductivity effect in AlGaN/GaN heterostructures grown on sapphire and SiC substrates. Journal of Applied Physics, 2008, 103, .	2.5	59
48	Generation of an Axially Asymmetric Bessel-Like Beam from a Metallic Subwavelength Aperture. Physical Review Letters, 2009, 102, 143901.	7.8	56
49	Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface. ACS Photonics, 2019, 6, 1812-1822.	6.6	55
50	Coupling effect between two adjacent chiral structure layers. Optics Express, 2010, 18, 5375.	3.4	53
51	Ultra-Broadband, Lithography-Free, and Large-Scale Compatible Perfect Absorbers: The Optimum Choice of Metal layers in Metal-Insulator Multilayer Stacks. Scientific Reports, 2017, 7, 14872.	3.3	53
52	Miniaturized negative permeability materials. Applied Physics Letters, 2007, 91, .	3.3	52
53	High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts. Applied Physics Letters, 2003, 82, 2344-2346.	3.3	51
54	Strategies for Plasmonic Hotâ€Electronâ€Driven Photoelectrochemical Water Splitting. ChemPhotoChem, 2018, 2, 161-182.	3.0	51

#	Article	IF	CITATIONS
55	Broadband circular polarizer based on high-contrast gratings. Optics Letters, 2012, 37, 2094.	3.3	50
56	Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture. Scientific Reports, 2017, 7, 4755.	3.3	50
57	High efficiency of graded index photonic crystal as an input coupler. Journal of Applied Physics, 2009, 105, .	2.5	49
58	Manipulation of Asymmetric Transmission in Planar Chiral Nanostructures by Anisotropic Loss. Advanced Optical Materials, 2013, 1, 482-488.	7.3	49
59	All Ceramic-Based Metal-Free Ultra-broadband Perfect Absorber. Plasmonics, 2019, 14, 1801-1815.	3.4	47
60	Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture. Optics Express, 2009, 17, 5933.	3.4	46
61	Toward photonic crystal based spatial filters with wide angle ranges of total transmission. Applied Physics Letters, 2009, 94, .	3.3	44
62	Tunable, omnidirectional, and nearly perfect resonant absorptions by a graphene-hBN-based hole array metamaterial. Optics Express, 2018, 26, 16940.	3.4	44
63	Negative phase advance in polarization independent, multi-layer negative-index metamaterials. Optics Express, 2008, 16, 8835.	3.4	43
64	Electrical characterization of MS and MIS structures on AlGaN/AlN/GaN heterostructures. Microelectronics Reliability, 2011, 51, 370-375.	1.7	43
65	High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range. Applied Physics Letters, 1999, 74, 1072-1074.	3.3	42
66	Surface wave splitter based on metallic gratings with sub-wavelength aperture. Optics Express, 2008, 16, 19091.	3.4	42
67	Experimental evaluation of impact ionization coefficients in AlxGa1â^'xN based avalanche photodiodes. Applied Physics Letters, 2006, 89, 183524.	3.3	41
68	A study of semi-insulating GaN grown on AlN buffer/sapphire substrate by metalorganic chemical vapor deposition. Journal of Crystal Growth, 2006, 293, 273-277.	1.5	41
69	Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions. New Journal of Physics, 2007, 9, 326-326.	2.9	41
70	InSb high-speed photodetectors grown on GaAs substrate. Journal of Applied Physics, 2003, 94, 5414.	2.5	40
71	Characterization and tilted response of a fishnet metamaterial operating at 100 GHz. Journal Physics D: Applied Physics, 2008, 41, 135011.	2.8	40
72	Unidirectional transmission in photonic-crystal gratings at beam-type illumination. Optics Express, 2010, 18, 22283.	3.4	40

#	Article	IF	CITATIONS
73	Multichannel optical diode with unidirectional diffraction relevant total transmission. Optics Express, 2012, 20, 14980.	3.4	40
74	Experimental realization of a high-contrast grating based broadband quarter-wave plate. Optics Express, 2012, 20, 27966.	3.4	40
75	Lithography-Free Planar Band-Pass Reflective Color Filter Using A Series Connection of Cavities. Scientific Reports, 2019, 9, 290.	3.3	40
76	Hybrid plasmon–phonon polariton bands in graphene–hexagonal boron nitride metamaterials [Invited]. Journal of the Optical Society of America B: Optical Physics, 2017, 34, D29.	2.1	39
77	Angstrom Thick ZnO Passivation Layer to Improve the Photoelectrochemical Water Splitting Performance of a TiO2 Nanowire Photoanode: The Role of Deposition Temperature. Scientific Reports, 2018, 8, 16322.	3.3	39
78	Colorimetric and Near-Absolute Polarization-Insensitive Refractive-Index Sensing in All-Dielectric Guided-Mode Resonance Based Metasurface. Journal of Physical Chemistry C, 2019, 123, 19125-19134.	3.1	39
79	Spatial filtering using dielectric photonic crystals at beam-type excitation. Journal of Applied Physics, 2010, 108, .	2.5	38
80	97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold. Nanoscale, 2017, 9, 16652-16660.	5.6	38
81	Band-dropping via coupled photonic crystal waveguides. Optics Express, 2002, 10, 1279.	3.4	37
82	†Fairy Chimney'â€Shaped Tandem Metamaterials as Double Resonance SERS Substrates. Small, 2013, 9, 531-537.	10.0	37
83	Experimental demonstration of labyrinth-based left-handed metamaterials. Optics Express, 2005, 13, 10238.	3.4	35
84	Transient surface photovoltage in n- and p-GaN as probed by x-ray photoelectron spectroscopy. Applied Physics Letters, 2011, 98, .	3.3	35
85	Strong Light–Matter Interactions in Au Plasmonic Nanoantennas Coupled with Prussian Blue Catalyst on BiVO ₄ for Photoelectrochemical Water Splitting. ChemSusChem, 2020, 13, 2577-2588.	6.8	34
86	Frequency and temperature dependence of the dielectric and AC electrical conductivity in (Ni/Au)/AlGaN/AlN/GaN heterostructures. Microelectronic Engineering, 2010, 87, 1997-2001.	2.4	33
87	How to Build Prussian Blue Based Water Oxidation Catalytic Assemblies: Common Trends and Strategies. Chemistry - A European Journal, 2021, 27, 3638-3649.	3.3	33
88	Spoof-plasmon relevant one-way collimation and multiplexing at beaming from a slit in metallic grating. Optics Express, 2012, 20, 26636.	3.4	32
89	Active Tuning from Narrowband to Broadband Absorbers Using a Sub-wavelength VO2 Embedded Layer. Plasmonics, 2021, 16, 1013-1021.	3.4	32
90	Mid-infrared adaptive thermal camouflage using a phase-change material coupled dielectric nanoantenna. Journal Physics D: Applied Physics, 2021, 54, 265105.	2.8	32

#	Article	IF	Citations
91	Enhanced transmission through a subwavelength aperture using metamaterials. Applied Physics Letters, 2009, 95, 052103.	3.3	31
92	LSPR enhanced MSM UV photodetectors. Nanotechnology, 2012, 23, 444010.	2.6	31
93	Asymmetric transmission of terahertz waves using polar dielectrics. Optics Express, 2014, 22, 3075.	3.4	31
94	Co doping induced structural and optical properties of sol–gel prepared ZnO thin films. Applied Surface Science, 2014, 318, 309-313.	6.1	31
95	Disordered Nanohole Patterns in Metal-Insulator Multilayer for Ultra-broadband Light Absorption: Atomic Layer Deposition for Lithography Free Highly repeatable Large Scale Multilayer Growth. Scientific Reports, 2017, 7, 15079.	3.3	31
96	Emerging photoluminescence from defective vanadium diselenide nanosheets. Photonics Research, 2018, 6, 244.	7.0	31
97	Solar-blind AlxGa1â~xN-based avalanche photodiodes. Applied Physics Letters, 2005, 87, 223502.	3.3	30
98	Off-axis directional beaming via photonic crystal surface modes. Applied Physics Letters, 2008, 92, .	3.3	30
99	Composite chiral metamaterials with negative refractive index and high values of the figure of merit. Optics Express, 2012, 20, 6146.	3.4	30
100	A Robust, Preciousâ€Metalâ€Free Dyeâ€Sensitized Photoanode for Water Oxidation: A Nanosecondâ€Long Excitedâ€State Lifetime through a Prussian Blue Analogue. Angewandte Chemie - International Edition, 2020, 59, 4082-4090.	13.8	30
101	MOCVD growth and electrical studies of p-type AlGaN with Al fraction 0.35. Journal of Crystal Growth, 2006, 289, 419-422.	1.5	29
102	Compact planar far-field superlens based on anisotropic left-handed metamaterials. Physical Review B, 2009, 80, .	3.2	29
103	Investigation of Trap States in AllnN/AlN/GaN Heterostructures by Frequency-Dependent Admittance Analysis. Journal of Electronic Materials, 2010, 39, 2681-2686.	2.2	29
104	Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides. Optics Express, 2011, 19, 24129.	3.4	29
105	Validation of electromagnetic field enhancement in near-infrared through Sierpinski fractal nanoantennas. Optics Express, 2014, 22, 19504.	3.4	28
106	Thermally sensitive scattering of terahertz waves by coated cylinders for tunable invisibility and masking. Optics Express, 2018, 26, 1.	3.4	28
107	Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications. Advanced Optical Materials, 2019, 7, 1900028.	7.3	28
108	The influence of nitridation time on the structural properties ofÂGaN grown on Si (111) substrate. Applied Physics A: Materials Science and Processing, 2009, 94, 73-82.	2.3	27

#	Article	IF	Citations
109	Step-edge-induced resistance anisotropy in quasi-free-standing bilayer chemical vapor deposition graphene on SiC. Journal of Applied Physics, 2014, 116, .	2.5	27
110	Toward Electrically Tunable, Lithography-Free, Ultra-Thin Color Filters Covering the Whole Visible Spectrum. Scientific Reports, 2018, 8, 11316.	3.3	26
111	Lithographyâ€Free Random Bismuth Nanostructures for Full Solar Spectrum Harvesting and Midâ€Infrared Sensing. Advanced Optical Materials, 2020, 8, 1901203.	7. 3	26
112	High-Throughput, High-Resolution Interferometric Light Microscopy of Biological Nanoparticles. ACS Nano, 2020, 14, 2002-2013.	14.6	26
113	Fano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators. Optics Express, 2014, 22, 26572.	3.4	25
114	Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals. Optics Express, 2017, 25, 31970.	3.4	25
115	High-speed GaAs-based resonant-cavity-enhanced 1.3 μm photodetector. Applied Physics Letters, 2000, 77, 3890-3892.	3.3	24
116	Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts. Optics Express, 2009, 17, 278.	3.4	24
117	Strain analysis of the GaN epitaxial layers grown on nitridated Si(111) substrate by metal organic chemical vapor deposition. Materials Science in Semiconductor Processing, 2013, 16, 83-88.	4.0	24
118	Guided Plasmon Modes of a Graphene-Coated Kerr Slab. Plasmonics, 2016, 11, 735-741.	3.4	24
119	Tunable plasmon-phonon polaritons in anisotropic 2D materials on hexagonal boron nitride. Nanophotonics, 2020, 9, 3909-3920.	6.0	24
120	Highly directional enhanced radiation from sources embedded inside three-dimensional photonic crystals. Optics Express, 2005, 13, 7645.	3.4	23
121	Metal–semiconductor–metal photodetector on as-deposited TiO2 thin films on sapphire substrate. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	1.2	23
122	Current transport properties of (Au/Ni)/HfAlO3/n-Si metalâ€"insulatorâ€"semiconductor junction. Journal of Physics and Chemistry of Solids, 2021, 148, 109758.	4.0	23
123	Highly directional emission from photonic crystals with a wide bandwidth. Applied Physics Letters, 2007, 91, 121105.	3.3	22
124	Improvement of breakdown characteristics in AlGaN/GaN/AlxGa1â^'xN HEMT based on a grading AlxGa1â^'xN buffer layer. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2593-2596.	1.8	22
125	One-way reciprocal spoof surface plasmons and relevant reversible diodelike beaming. Physical Review B, 2013, 87, .	3.2	22
126	Low dark current and high speed ZnO metal–semiconductor–metal photodetector on SiO2/Si substrate. Applied Physics Letters, 2014, 105, .	3.3	22

#	Article	IF	Citations
127	Experimental demonstration of subwavelength focusing of electromagnetic waves by labyrinth-based two-dimensional metamaterials. Optics Letters, 2006, 31, 814.	3.3	21
128	Deep-ultraviolet Al0.75Ga0.25N photodiodes with low cutoff wavelength. Applied Physics Letters, 2006, 88, 123503.	3.3	21
129	Structural and electrical characterizations of InxGa1-xAs/InP structures for infrared photodetector applications. Journal of Applied Physics, 2014, 115, 104502.	2.5	21
130	Comparison of Back and Top Gating Schemes with Tunable Graphene Fractal Metasurfaces. ACS Photonics, 2016, 3, 2303-2307.	6.6	21
131	Epsilon-near-zero enhancement of near-field radiative heat transfer in BP/hBN and BP/ \hat{l} ±-MoO3 parallel-plate structures. Applied Physics Letters, 2022, 120, .	3.3	21
132	Graphene-based tunable plasmon induced transparency in gold strips. Optical Materials Express, 2018, 8, 1069.	3.0	20
133	VO ₂ –graphene-integrated hBN-based metasurface for bi-tunable phonon-induced transparency and nearly perfect resonant absorption. Journal Physics D: Applied Physics, 2021, 54, 245101.	2.8	20
134	Tunable Zero-Index Photonic Crystal Waveguide for Two-Qubit Entanglement Detection. ACS Photonics, 2016, 3, 2129-2133.	6.6	19
135	Theoretical Study and Experimental Realization of a Low-Loss Metamaterial Operating at the Millimeter-Wave Regime: Demonstrations of Flat- and Prism-Shaped Samples. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 386-393.	2.9	18
136	Coupling enhancement of split ring resonators on graphene. Carbon, 2014, 80, 351-355.	10.3	18
137	Synthesis and Characterization of Iron Oxide Derivatized Mutant Cowpea Mosaic Virus Hybrid Nanoparticles. Advanced Materials, 2008, 20, 4816-4820.	21.0	17
138	Transmission enhancement through deep subwavelength apertures using connected split ring resonators. Optics Express, 2010, 18, 3952.	3.4	17
139	Improved selectivity from a wavelength addressable device for wireless stimulation of neural tissue. Frontiers in Neuroengineering, 2014, 7, 5.	4.8	17
140	Multiband one-way polarization conversion in complementary split-ring resonator based structures by combining chirality and tunneling. Optics Express, 2015, 23, 13517.	3.4	17
141	Electrically controllable plasmon induced reflectance in hybrid metamaterials. Applied Physics Letters, 2018, 113, .	3.3	17
142	Epitaxial lift-off of thin InAs layers. Journal of Electronic Materials, 1995, 24, 757-760.	2.2	16
143	Designing materials with desired electromagnetic properties. Microwave and Optical Technology Letters, 2006, 48, 2611-2615.	1.4	16
144	Dual-color ultraviolet metal-semiconductor-metal AlGaN photodetectors. Applied Physics Letters, 2006, 89, 143503.	3.3	16

#	Article	IF	Citations
145	Spatial and spatial-frequency filtering using one-dimensional graded-index lattices with defects. Optics Communications, 2009, 282, 4490-4496.	2.1	16
146	Dual-frequency division de-multiplexer based on cascaded photonic crystal waveguides. Physica B: Condensed Matter, 2012, 407, 4043-4047.	2.7	16
147	Photocatalytic water oxidation with a Prussian blue modified brown TiO ₂ . Chemical Communications, 2021, 57, 508-511.	4.1	16
148	Hybrid indium tin oxide-Au metamaterial as a multiband bi-functional light absorber in the visible and near-infrared ranges. Journal Physics D: Applied Physics, 2021, 54, 275102.	2.8	16
149	Anisotropic absorber and tunable source of MIR radiation based on a black phosphorus-SiC metasurface. Photonics and Nanostructures - Fundamentals and Applications, 2022, 50, 101020.	2.0	16
150	Super-resolution imaging by one-dimensional, microwave left-handed metamaterials with an effective negative index. Journal of Physics Condensed Matter, 2008, 20, 304216.	1.8	15
151	The electrical, optical, and structural properties of GaN epitaxial layers grown on Si(111) substrate with interlayers. Superlattices and Microstructures, 2009, 46, 846-857.	3.1	15
152	The effect of SixNy interlayer on the quality of GaN epitaxial layers grown on Si(111) substrates by MOCVD. Current Applied Physics, 2009, 9, 472-477.	2.4	15
153	Nanoantenna coupled UV subwavelength photodetectors based on GaN. Optics Express, 2012, 20, 2649.	3.4	15
154	Ultrafast transient optical loss dynamics in exciton–plasmon nano-assemblies. Nanoscale, 2017, 9, 6558-6566.	5.6	15
155	Determination of current transport and trap states density in AllnGaN/GaN heterostructures. Microelectronics Reliability, 2019, 103, 113517.	1.7	15
156	Transmissive terahertz metasurfaces with vanadium dioxide split-rings and grids for switchable asymmetric polarization manipulation. Scientific Reports, 2022, 12, 3518.	3.3	15
157	Physics and applications of photonic nanocrystals. International Journal of Nanotechnology, 2004, 1, 379.	0.2	14
158	Electromagnetic wave focusing from sources inside a two-dimensional left-handed material superlens. New Journal of Physics, 2006, 8, 221-221.	2.9	14
159	Evolution of the mosaic structure in InGaN layer grown on a thick GaN template and sapphire substrate. Journal of Materials Science: Materials in Electronics, 2013, 24, 4471-4481.	2.2	14
160	Experimental study of broadband unidirectional splitting in photonic crystal gratings with broken structural symmetry. Applied Physics Letters, 2013, 102, .	3.3	14
161	AlGaN/GaN-Based Laterally Gated High-Electron-Mobility Transistors With Optimized Linearity. IEEE Transactions on Electron Devices, 2021, 68, 1016-1023.	3.0	14
162	Multifunctional tunable gradient metasurfaces for terahertz beam splitting and light absorption. Optics Letters, 2021, 46, 3953.	3.3	14

#	Article	IF	CITATIONS
163	Experimental observation of subwavelength localization using metamaterial-based cavities. Optics Letters, 2009, 34, 88.	3.3	13
164	Wide-angle reflection-mode spatial filtering and splitting with photonic crystal gratings and single-layer rod gratings. Optics Letters, 2014, 39, 6193.	3.3	13
165	XPS for probing the dynamics of surface voltage and photovoltage in GaN. Applied Surface Science, 2014, 323, 25-30.	6.1	13
166	Effects of rapid thermal annealing on the structural and local atomic properties of ZnO: Ge nanocomposite thin films. Journal of Applied Physics, 2015, 117, .	2.5	13
167	Optical, electronic, and elastic properties of some A ⁵ 8 ⁶ C ⁷ ferroelectrics (A=Sb, Bi; B=S, Se; C=I, Br, Cl): First principle calculation. Ferroelectrics, 2017, 511, 22-34.	0.6	13
168	Characteristic Attributes of Multiple Cascaded Terahertz Metasurfaces with Magnetically Tunable Subwavelength Resonators. Annalen Der Physik, 2018, 530, 1700252.	2.4	13
169	Compact and Wideband CPW Wilkinson Power Dividers for GaN MMIC Applications., 2018,,.		13
170	A Transparent All-Dielectric Multifunctional Nanoantenna Emitter Compatible With Thermal Infrared and Cooling Scenarios. IEEE Access, 2021, 9, 98590-98602.	4.2	13
171	Diode like high-contrast asymmetric transmission of linearly polarized waves based on plasmon-tunneling effect coupling to electromagnetic radiation modes. Journal Physics D: Applied Physics, 2021, 54, 365102.	2.8	13
172	Dynamic beam splitter employing an all-dielectric metasurface based on an elastic substrate. Optics Letters, 2020, 45, 3521.	3.3	13
173	Directivity enhancement and deflection of the beam emitted from a photonic crystal waveguide via defect coupling. Optics Express, 2007, 15, 14973.	3.4	12
174	Forward tunneling current in Pt/p-lnGaN and Pt/n-lnGaN Schottky barriers in a wide temperature range. Microelectronic Engineering, 2012, 100, 51-56.	2.4	12
175	Temperature dependent energy relaxation time in AlGaN/AlN/GaN heterostructures. Superlattices and Microstructures, 2012, 51, 733-744.	3.1	12
176	Ultra-broadband Asymmetric Light Transmission and Absorption Through The Use of Metal Free Multilayer Capped Dielectric Microsphere Resonator. Scientific Reports, 2017, 7, 14538.	3.3	12
177	A Direct Detection Fiber Optic Distributed Acoustic Sensor With a Mean SNR of 7.3 dB at 102.7 km. IEEE Photonics Journal, 2019, 11, 1-8.	2.0	12
178	A Robust, Preciousâ€Metalâ€Free Dyeâ€Sensitized Photoanode for Water Oxidation: A Nanosecondâ€Long Excitedâ€State Lifetime through a Prussian Blue Analogue. Angewandte Chemie, 2020, 132, 4111-4119.	2.0	12
179	Hybrid surface plasmon polaritons in graphene coupled anisotropic van der Waals material waveguides. Journal Physics D: Applied Physics, 2021, 54, 455102.	2.8	12
180	Rapid and Sensitive Colorimetric ELISA Using Silver Nanoparticles, Microwaves and Split Ring Resonator Structures. Nano Biomedicine and Engineering, 2010, 2, 155-164.	0.9	12

#	Article	IF	CITATIONS
181	Multichromic Vanadium Pentoxide Thin Films Through Ultrasonic Spray Deposition. Journal of the Electrochemical Society, 2021, 168, 106511.	2.9	12
182	Negative refraction, subwavelength focusing and beam formation by photonic crystals. Journal Physics D: Applied Physics, 2007, 40, 2652-2658.	2.8	11
183	A Planar Metamaterial With Dual-Band Double-Negative Response at EHF. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 376-379.	2.9	11
184	Determination of the LO phonon energy by using electronic and optical methods in AlGaN/GaN. Open Physics, 2012, 10, .	1.7	11
185	Asymmetric transmission in prisms using structures and materials with isotropic-type dispersion. Optics Express, 2015, 23, 24120.	3.4	11
186	Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene. Carbon, 2016, 108, 515-520.	10.3	11
187	Deep Subwavelength Light Confinement in Disordered Bismuth Nanorods as a Linearly Thermal‶unable Metamaterial. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000066.	2.4	11
188	Exceptional adaptable MWIR thermal emission for ordinary objects covered with thin VO2 film. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 262, 107500.	2.3	11
189	Nonalloyed Ohmic Contacts in AlGaN/GaN HEMTs With MOCVD Regrowth of InGaN for <i>Ka</i> Applications. IEEE Transactions on Electron Devices, 2021, 68, 1006-1010.	3.0	11
190	Resonant cavity based compact efficient antireflection structures for photonic crystals. Journal Physics D: Applied Physics, 2007, 40, 5873-5877.	2.8	10
191	Structural and optical properties of an InxGa1â^'xN/GaN nanostructure. Surface Science, 2007, 601, 3892-3897.	1.9	10
192	Enhanced directed emission from metamaterial based radiation source. Applied Physics Letters, 2008, 92, 204103.	3.3	10
193	Oblique response of a split-ring-resonator-based left-handed metamaterial slab. Optics Letters, 2009, 34, 2294.	3.3	10
194	Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index. Optics Express, 2009, 17, 16869.	3.4	10
195	MOCVD growth and optical properties of non-polar (11–20) a-plane GaN on (10–12) r-plane sapphire substrate. Journal of Crystal Growth, 2010, 312, 3438-3442.	1.5	10
196	Current transport mechanisms and trap state investigations in (Ni/Au)–AlN/GaN Schottky barrier diodes. Microelectronics Reliability, 2011, 51, 576-580.	1.7	10
197	Determination of the in-plane effective mass and quantum lifetime of 2D electrons in AlGaN/GaN based HEMTs. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1625-1628.	0.8	10
198	One-way Rayleigh-Wood anomalies and tunable narrowband transmission in photonic crystal gratings with broken structural symmetry. Physical Review A, 2013, 87, .	2.5	10

#	Article	IF	Citations
199	Examination of the temperature related structural defects of InGaN/GaN solar cells. Superlattices and Microstructures, 2015, 86, 379-389.	3.1	10
200	Effect of gate structures on the DC and RF performance of AlGaN/GaN HEMTs. Semiconductor Science and Technology, 2018, 33, 125017.	2.0	10
201	Tunable infrared asymmetric light transmission and absorption via graphene-hBN metamaterials. Journal of Applied Physics, 2019, 126, .	2.5	10
202	Large scale compatible fabrication of gold capped titanium dioxide nanoantennas using a shadowing effect for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2020, 45, 1521-1531.	7.1	10
203	Unveiling the optical parameters of vanadium dioxide in the phase transition region: a hybrid modeling approach. RSC Advances, 2020, 10, 29945-29955.	3.6	10
204	Multi-spectral infrared camouflage through excitation of plasmon-phonon polaritons in a visible-transparent hBN-ITO nanoantenna emitter. Optics Letters, 2021, 46, 4996.	3.3	10
205	One-way and near-absolute polarization insensitive near-perfect absorption by using an all-dielectric metasurface. Optics Letters, 2020, 45, 2010.	3.3	10
206	Experimental and numerical analyses of the resonances of split ring resonators. Physica Status Solidi (B): Basic Research, 2007, 244, 1197-1201.	1.5	9
207	Effect of growth pressure on coalescence thickness and crystal quality of GaN deposited on 4H–SiC. Journal of Crystal Growth, 2011, 315, 168-173.	1.5	9
208	Concentric Ring Structures as Efficient SERS Substrates. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 4601605-4601605.	2.9	9
209	Resonance broadening and tuning of split ring resonators by top-gated epitaxial graphene on SiC substrate. Applied Physics Letters, 2013, 103, 181116.	3.3	9
210	Diffraction inspired unidirectional and bidirectional beam splitting in defect-containing photonic structures without interface corrugations. Journal of Applied Physics, 2016, 119, 193108.	2.5	9
211	Broadband mixing of \$\${mathscr{P}}{mathscr{T}}\$\$-symmetric and \$\${mathscr{P}}{mathscr{T}}\$\$-broken phases in photonic heterostructures with a one-dimensional loss/gain bilayer. Scientific Reports, 2017, 7, 15504.	3.3	9
212	Intersection behavior of the current–voltage (l–V) characteristics of the (Au/Ni)/HfAlO3/n-Si (MIS) structure depends on the lighting intensity. Journal of Materials Science: Materials in Electronics, 2020, 31, 13167-13172.	2.2	9
213	Building an Iron Chromophore Incorporating Prussian Blue Analogue for Photoelectrochemical Water Oxidation. Chemistry - A European Journal, 2021, 27, 8966-8976.	3.3	9
214	Adaptive visible and short-wave infrared camouflage using a dynamically tunable metasurface. Optics Letters, 2021, 46, 4777.	3.3	9
215	Tunable deflection and asymmetric transmission of THz waves using a thin slab of graphene-dielectric metamaterial, with and without ENZ components. Optical Materials Express, 2018, 8, 3887.	3.0	9
216	Electrodeposited cobalt hexacyanoferrate electrode as a non-enzymatic glucose sensor under neutral conditions. Analytica Chimica Acta, 2021, 1188, 339188.	5.4	9

#	Article	IF	CITATIONS
217	High-Performance Solar-Blind AlGaN Schottky Photodiodes. MRS Internet Journal of Nitride Semiconductor Research, 2003, 8, 1.	1.0	8
218	Frequency dependent steering with backward leaky waves via photonic crystal interface layer. Optics Express, 2009, 17, 9879.	3.4	8
219	Spectral response modification of TiO_2 MSM photodetector with an LSPR filter. Optics Express, 2014, 22, 14096.	3.4	8
220	Chemical Visualization of a GaN p-n junction by XPS. Scientific Reports, 2015, 5, 14091.	3.3	8
221	Investigation of a Hybrid Approach for Normally-Off GaN HEMTs Using Fluorine Treatment and Recess Etch Techniques. IEEE Journal of the Electron Devices Society, 2019, 7, 351-357.	2.1	8
222	Structural, Electronic, and Mechanical Properties of A ₃ Mn ₂ O ₇ (A = Sr, Ca): Ab Initio Calculation. Ferroelectrics, 2019, 538, 135-145.	0.6	8
223	A Route to Unusually Broadband Plasmonic Absorption Spanning from Visible to Mid-infrared. Plasmonics, 2019, 14, 1269-1281.	3.4	8
224	Thermal Annealing Effects on the Electrical and Structural Properties of Ni/Pt Schottky Contacts on the Quaternary AllnGaN Epilayer. Journal of Electronic Materials, 2019, 48, 887-897.	2.2	8
225	Improved <i>T</i> _{MAX} Estimation in GaN HEMTs Using an Equivalent Hot Point Approximation. IEEE Transactions on Electron Devices, 2020, 67, 1553-1559.	3.0	8
226	Elastic and optical properties of sillenites: First principle calculations. Ferroelectrics, 2020, 557, 98-104.	0.6	8
227	Fiber-optic gyroscope for the suppression of a Faraday-effect-induced bias error. Optics Letters, 2021, 46, 4328.	3.3	8
228	Embedded arrays of annular apertures with multiband near-zero-index behavior and demultiplexing capability at near-infrared. Optical Materials Express, 2019, 9, 3169.	3.0	8
229	A simple Mie-resonator based meta-array with diverse deflection scenarios enabling multifunctional operation at near-infrared. Nanophotonics, 2020, 9, 4589-4600.	6.0	8
230	Observation of Negative Refraction and Negative Phase Velocity in True Left-Handed Metamaterials. , 2006, , .		7
231	Transmission, refraction, and focusing properties of labyrinth based left-handed metamaterials. Physica Status Solidi (B): Basic Research, 2007, 244, 1202-1210.	1.5	7
232	Al _x Ga _{1–x} Nâ€based avalanche photodiodes with high reproducible avalanche gain. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2316-2319.	0.8	7
233	Experimental observation of cavity formation in composite metamaterials. Optics Express, 2008, 16, 11132.	3.4	7

Optical Properties and Electronic Band Structure of Topological Insulators (on A52B63Compound) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

#	Article	IF	Citations
235	Structural field plate length optimization for high power applications. , 2014, , .		7
236	High power K-band GaN on SiC CPW monolithic power amplifier. , 2014, , .		7
237	Mosaic Structure Characterization of the AllnN Layer Grown on Sapphire Substrate. Advances in Materials Science and Engineering, 2014, 2014, 1-11.	1.8	7
238	Mechanical, electronic, and optical properties of the A ₄ B ₆ layered ferroelectrics: <i>ab initio</i> calculation. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 651-658.	0.8	7
239	Structural properties of InGaN/GaN/Al2O3 structure from reciprocal space mapping. Journal of Materials Science: Materials in Electronics, 2018, 29, 12373-12380.	2.2	7
240	Fabrication of 15-\$mu\$ m Pitch \$640imes512\$ InAs/GaSb Type-II Superlattice Focal Plane Arrays. IEEE Journal of Quantum Electronics, 2019, 55, 1-5.	1.9	7
241	Pushing the limits in photosensitizer-catalyst interaction via a short cyanide bridge for water oxidation. Cell Reports Physical Science, 2021, 2, 100319.	5.6	7
242	Light-Driven Water Oxidation with Ligand-Engineered Prussian Blue Analogues. Inorganic Chemistry, 2022, 61, 3931-3941.	4.0	7
243	Low Damage Etching of GaN Surfaces via Bias-Assisted Photoenhanced Electrochemical Oxidation in Deionized Water. Journal of Electronic Materials, 2007, 36, 629-633.	2.2	6
244	The influence of substrate surface preparation on LP MOVPE GaN epitaxy on differently oriented 4H-SiC substrates. Journal of Crystal Growth, 2008, 310, 4876-4879.	1.5	6
245	Transmission spectra and the effective parameters for planar metamaterials with omega shaped metallic inclusions. Optics Communications, 2010, 283, 2547-2551.	2.1	6
246	Multiple slow waves and relevant transverse transmission and confinement in chirped photonic crystals. Optics Express, 2014, 22, 21806.	3.4	6
247	Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics. Journal of Applied Physics, 2015, 118, .	2.5	6
248	Voltage contrast X-ray photoelectron spectroscopy reveals graphene-substrate interaction in graphene devices fabricated on the C- and Si- faces of SiC. Applied Physics Letters, 2015, 107, 121603.	3.3	6
249	Buffer effects on the mosaic structure of the HR-GaN grown on 6H-SiC substrate by MOCVD. Journal of Materials Science: Materials in Electronics, 2017, 28, 3200-3209.	2.2	6
250	Strong Interference in Planar, Multilayer Perfect Absorbers: Achieving High-Operational Performances in Visible and Near-Infrared Regimes. IEEE Nanotechnology Magazine, 2019, 13, 34-48.	1.3	6
251	Spectrally Selective Ultrathin Photodetectors Using Strong Interference in Nanocavity Design. IEEE Electron Device Letters, 2019, 40, 925-928.	3.9	6
252	An All-Dielectric Metasurface Coupled with Two-Dimensional Semiconductors for Thermally Tunable Ultra-narrowband Light Absorption. Plasmonics, 2021, 16, 687-694.	3.4	6

#	Article	IF	Citations
253	Strong light emission from a defective hexagonal boron nitride monolayer coupled to near-touching random plasmonic nanounits. Optics Letters, 2021, 46, 1664.	3.3	6
254	Accurate Isolation Networks in Quadrature Couplers and Power Dividers. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 1148-1152.	3.0	6
255	Numerical analysis of a thermally tunable spectrally selective absorber enabled by an all-dielectric metamirror. Optics Letters, 2020, 45, 6174.	3.3	6
256	Lithography-free metamaterial absorbers: opinion. Optical Materials Express, 2022, 12, 524.	3.0	6
257	Subwavelength Densely Packed Disordered Semiconductor Metasurface Units for Photoelectrochemical Hydrogen Generation. ACS Applied Energy Materials, 2022, 5, 2826-2837.	5.1	6
258	NEGATIVE REFRACTION AND SUBWAVELENGTH FOCUSING USING PHOTONIC CRYSTALS. Modern Physics Letters B, 2004, 18, 1275-1291.	1.9	5
259	Observation of Negative Refraction and Focusing in Two-Dimensional Photonic Crystals. Japanese Journal of Applied Physics, 2006, 45, 6064-6070.	1.5	5
260	Verification of impedance matching at the surface of left-handed materials. Microwave and Optical Technology Letters, 2006, 48, 2548-2552.	1.4	5
261	Wide bandwidth directional beaming via waveguide ports in photonic crystals. Journal Physics D: Applied Physics, 2008, 41, 155115.	2.8	5
262	Non-ideal multifrequency cloaking using strongly dispersive materials. Physica B: Condensed Matter, 2010, 405, 2959-2963.	2.7	5
263	Optical Properties of the Narrow-Band Ferroelectrics: First Principle Calculations. Ferroelectrics, 2015, 483, 43-52.	0.6	5
264	The transport properties of Dirac fermions in chemical vapour-deposited single-layer graphene. Philosophical Magazine, 2017, 97, 187-200.	1.6	5
265	Negative Differential Resistance Observation and a New Fitting Model for Electron Drift Velocity in GaN-Based Heterostructures. IEEE Transactions on Electron Devices, 2018, 65, 950-956.	3.0	5
266	Normally-off AlGaN/GaN MIS-HEMT with low gate leakage current using a hydrofluoric acid pre-treatment. Solid-State Electronics, 2019, 158, 22-27.	1.4	5
267	Generation of additive colors with near unity amplitude using a multilayer tandem Fabry–Perot cavity. Optics Letters, 2021, 46, 3464.	3.3	5
268	Focusing surface plasmons via changing the incident angle. Journal of Applied Physics, 2008, 103, .	2.5	4
269	Dispersion irrelevant wideband asymmetric transmission in dielectric photonic crystal gratings. Optics Letters, 2012, 37, 4844.	3.3	4
270	Magnetotransport study on AllnN/(GaN)/AlN/GaN heterostructures. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1119-1123.	1.8	4

#	Article	lF	Citations
271	Near-field light localization using subwavelength apertures incorporated with metamaterials. Optics Communications, 2012, 285, 3390-3396.	2.1	4
272	Current-Transport Mechanisms in the AllnN/AlN/GaN single-channel and AllnN/AlN/GaN/AlN/GaN double-channel heterostructures. Thin Solid Films, 2013, 548, 411-418.	1.8	4
273	SiC Substrate effects on electron transport in the epitaxial graphene layer. Electronic Materials Letters, 2014, 10, 387-391.	2.2	4
274	AlGaN/GaN HEMT with fT:100GHz and fmax:128GHz., 2015,,.		4
275	Optical and electronic properties of orthorhombic and trigonal AXO ₃ (A=Cd, Zn; X=Sn,) Tj ETQq1 1	0.784314	rgBT /Overlo
276	Topological insulator based locally resonant phononic crystals: Wave propagation and acoustic band gaps. Ferroelectrics, 2016, 499, 123-129.	0.6	4
277	A detailed study on optical properties of InGaN/GaN/Al2O3 multi quantum wells. Journal of Materials Science: Materials in Electronics, 2019, 30, 10391-10398.	2.2	4
278	Effects of the AlN nucleation layer thickness on the crystal structures of an AlN epilayer grown on the 6H-SiC substrate. Philosophical Magazine, 2019, 99, 1715-1731.	1.6	4
279	Connection of Collimation, Asymmetric Beaming, and Independent Transmission-Reflection Processes in Concentric-Groove Gratings Supporting Spoof Surface Plasmons. Plasmonics, 2019, 14, 721-729.	3.4	4
280	Strong Light–Matter Interactions in Au Plasmonic Nanoantennas Coupled with Prussian Blue Catalyst on BiVO 4 for Photoelectrochemical Water Splitting. ChemSusChem, 2020, 13, 2483-2483.	6.8	4
281	Accurate and Process-Tolerant Resistive Load. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 2495-2500.	4.6	4
282	Selective Glucose Sensing under Physiological pH with Flexible and Binderâ€Free Prussian Blue Coated Carbon Cloth Electrodes. ChemElectroChem, 2022, 9, .	3.4	4
283	Design and robustness improvement of highâ€performance LNA using 0.15 μm GaN technology for <i>X</i> a€band applications. International Journal of Circuit Theory and Applications, 2022, 50, 2305-2319.	2.0	4
284	Ferroelectric based tuneable SRR based metamaterial for microwave applications. , 2007, , .		3
285	Planar bilayer metamaterial with left-handed transmission and negative refraction at microwave frequencies. Physica Status Solidi (B): Basic Research, 2007, 244, 1188-1191.	1.5	3
286	Metamaterial inspired enhanced farâ€field transmission through a subwavelength nanoâ€hole. Physica Status Solidi - Rapid Research Letters, 2010, 4, 286-288.	2.4	3
287	The effect of insulator layer thickness on the main electrical parameters in (Ni/Au)/AlxGa1â^'xN/AlN/GaN heterostructures. Surface and Interface Analysis, 2010, 42, 803-806.	1.8	3
288	FSS-based approach for the power transmission enhancement through electrically small apertures. Applied Physics A: Materials Science and Processing, 2011, 103, 927-931.	2.3	3

#	Article	IF	CITATIONS
289	Transmission Near-Field Scanning Optical Microscopy Investigation on Cellular Uptake Behavior of Iron Oxide Nanoparticles. BioNanoScience, 2012, 2, 135-143.	3.5	3
290	Chiral Structures: Manipulation of Asymmetric Transmission in Planar Chiral Nanostructures by Anisotropic Loss (Advanced Optical Materials 7/2013). Advanced Optical Materials, 2013, 1, 472-472.	7.3	3
291	BaTiO ₃ and TeO ₂ based gyroscopes for guidance systems: FEM analysis. Ferroelectrics, 2016, 497, 15-23.	0.6	3
292	Location and Visualization of Working p-n and/or n-p Junctions by XPS. Scientific Reports, 2016, 6, 32482.	3.3	3
293	Bright off-axis directional emission with plasmonic corrugations. Optics Express, 2017, 25, 30827.	3.4	3
294	X Band GaN Based MMIC Power Amplifier with 36.5dBm P <inf> 1-dB</inf> for Space Applications. , 2018, , .		3
295	Highly Efficient Semiconductor-Based Metasurface for Photoelectrochemical Water Splitting: Broadband Light Perfect Absorption with Dimensions Smaller than the Diffusion Length. Plasmonics, 2020, 15, 829-839.	3.4	3
296	Scattering of spin-1/2 particles from a PT-symmetric complex potential. Europhysics Letters, 2020, 131, 11001.	2.0	3
297	Ultraminiature Antennas Combining Subwavelength Resonators and a Very-High-ε Uniform Substrate: The Case of Lithium Niobate. IEEE Transactions on Antennas and Propagation, 2020, 68, 5071-5081.	5.1	3
298	Ferroelectric based fractal phononic crystals: wave propagation and band structure. Ferroelectrics, 2020, 557, 85-91.	0.6	3
299	Microstructural Analysis with Graded and Non-Graded Indium in InGaN Solar Cell. Journal of Nanoelectronics and Optoelectronics, 2017, 12, 109-117.	0.5	3
300	Lithography-free disordered metal–insulator–metal nanoantennas for colorimetric sensing. Optics Letters, 2020, 45, 6719.	3.3	3
301	Field test and fading measurement of a distributed acoustic sensor system over a 50 km-long fiber. , 2018, , .		3
302	Swanepoel method for AllnN/AlN HEMTs. Journal of Materials Science: Materials in Electronics, 2020, 31, 9969-9973.	2.2	3
303	Fast Unveiling of <i>T</i> _{max} in GaN HEMT Devices via the Electrical Measurement-Assisted Two-Heat Source Model. IEEE Transactions on Electron Devices, 2022, 69, 2319-2324.	3.0	3
304	Correlation-based study of FEA and IR thermography to reveal the 2DEG temperature of a multi-fingered high-power GaN HEMT. Journal of Applied Physics, 2022, 131, .	2.5	3
305	"Plug and Play―Photosensitizer–Catalyst Dyads for Water Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 21131-21140.	8.0	3
306	DC and RF performance of lateral AlGaN/GaN FinFET with ultrathin gate dielectric. Semiconductor Science and Technology, 2022, 37, 085008.	2.0	3

#	Article	IF	CITATIONS
307	A hybrid light source with integrated inorganic light-emitting diode and organic polymer distributed feedback grating. Nanotechnology, 2008, 19, 195202.	2.6	2
308	Near-field measurement of a planar meta-surface illuminated by dipole antennas. , 2008, , .		2
309	Electron transport properties in Al _{0.25} Ga _{0.75} N/AlN/GaN heterostructures with different InGaN back barrier layers and GaN channel thicknesses grown by MOCVD. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 434-438.	1.8	2
310	Two-Dimensional Ferroelectric Photonic Crystals: Optics and Band Structure. Ferroelectrics, 2013, 448, 23-28.	0.6	2
311	Modeling and Simulation of the Ferroelectric Based Micro Gyroscope: FEM Analysis. Ferroelectrics, 2013, 446, 46-58.	0.6	2
312	High power K-band GaN on SiC CPW monolithic power amplifier. , 2014, , .		2
313	Band gap and optical transmission in the Fibonacci type oneâ€dimensional A ⁵ B ⁶ C ⁷ based photonic crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 540-544.	0.8	2
314	Dynamic Nonlinear Optical Processes in Some Oxygen-Octahedra Ferroelectrics: First Principle Calculations. Ferroelectrics, 2015, 483, 26-42.	0.6	2
315	AVBVICVII ferroelectrics as novel materials for phononic crystals. Ferroelectrics, 2017, 511, 12-21.	0.6	2
316	Electronic, mechanical, and optical properties of Ruddlesden-Popper perovskite sulfides: First principle calculation. Ferroelectrics, 2018, 535, 142-151.	0.6	2
317	Electronic and elastic properties of the multiferroic crystals with the Kagome type lattices -Mn ₃ V ₂ O ₈ and Ni ₃ V ₂ O ₈ : First principle calculations. Ferroelectrics, 2019, 544, 11-19.	0.6	2
318	Tuning Plasmon Induced Reflectance with Hybrid Metasurfaces. Photonics, 2019, 6, 29.	2.0	2
319	From model to low noise amplifier monolithic microwave integrated circuit: 0.03–2.6 GHz plastic quadâ€flat noâ€leads packaged Galliumâ€Nitride low noise amplifier monolithic microwave integrated circuit. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2021, 34. e2859.	1.9	2
320	High-Speed Visible-Blind Resonant Cavity Enhanced AlGaN Schottky Photodiodes. MRS Internet Journal of Nitride Semiconductor Research, 2003, 8, 1.	1.0	2
321	Multifunctional blazed gratings for multiband spatial filtering, retroreflection, splitting, and demultiplexing based on <i>C</i> ₂ symmetric photonic crystals. Journal of Applied Physics, 2022, 131, 223101.	2.5	2
322	High-Speed Solar-Blind AlGaN Schottky Photodiodes. Materials Research Society Symposia Proceedings, 2003, 764, 1.	0.1	1
323	InGaN/GaN based LEDs with electroluminescence in violet, blue, and green tuned by epitaxial growth temperature., 2006,,.		1
324	Study of the field emitted by a source placed inside a two-dimensional left-handed metamaterial. Optics Letters, 2007, 32, 850.	3.3	1

#	Article	IF	Citations
325	The almost magical world of metamaterials. , 2008, , .		1
326	Observation of coupled-cavity structures in metamaterials. Applied Physics Letters, 2008, 93, 121910.	3.3	1
327	AlGaN quadruple-band photodetectors. , 2009, , .		1
328	Design of multi-octave band GaN-HEMT power amplifier. , 2012, , .		1
329	Optical properties of metamaterial-based devices modulated by a liquid crystal. Applied Physics A: Materials Science and Processing, 2014, 117, 611-619.	2.3	1
330	Organic semiconductor-based photonic crystals for solar cell arrays: band gap and optical properties. Journal of Modern Optics, 2014, 61, 1754-1760.	1.3	1
331	Plasmonic nanoparticle based nanobiosensors and nanophotodetectors. , 2014, , .		1
332	Fibonacci sequences quasiperiodic A5B6C7 ferroelectric based photonic crystal: FDTD analysis. Integrated Ferroelectrics, 2017, 183, 26-35.	0.7	1
333	Multiple band gaps of a ferroelectric based 2D-phononic crystal slab. Ferroelectrics, 2018, 535, 152-160.	0.6	1
334	Epsilon-Near-Zero Waveguides for Quantum Information Applications: A Theoretical Approach for N-Qubits. Journal of the Physical Society of Japan, 2018, 87, 114402.	1.6	1
335	Photonic band gap of multiferroic-dielectric materials in the IR region: FDTD method. Ferroelectrics, 2019, 539, 50-54.	0.6	1
336	Multiferroic based 2D phononic crystals: Band structure and wave propagations. Ferroelectrics, 2019, 544, 88-95.	0.6	1
337	Innenrücktitelbild: A Robust, Preciousâ€Metalâ€Free Dyeâ€Sensitized Photoanode for Water Oxidation: A Nanosecondâ€Long Excitedâ€State Lifetime through a Prussian Blue Analogue (Angew. Chem. 10/2020). Angewandte Chemie, 2020, 132, 4211-4211.	2.0	1
338	Ultra-broadband Near-Unity Light Absorption by Disjunct Scattering Resonances of Disordered Nanounits Created with Atomic Scale Shadowing Effect. Plasmonics, 2021, 16, 83-90.	3.4	1
339	Effect of the gate structure on the kink phenomenon in of AlGaN/GaN HEMT. Electronics Letters, 2021, 57, 139-141.	1.0	1
340	The Mechanical, Electronic and Optical Properties of Sn ₂ P ₂ S ₆ Compound in Different Phases. Integrated Ferroelectrics, 2021, 220, 56-70.	0.7	1
341	High-Speed Resonant Cavity Enhanced Photodiodes. Optics and Photonics News, 1999, 10, 13.	0.5	0
342	Solar-Blind AlGaN-based Schottky Photodiodes With High Detectivity and Low Noise. Materials Research Society Symposia Proceedings, 2002, 743, L7.11.1.	0.1	0

#	Article	IF	CITATIONS
343	High-Performance AlGaN-Based Visible-Blind Resonant Cavity Enhanced Schottky Photodiodes. Materials Research Society Symposia Proceedings, 2003, 764, 1.	0.1	0
344	Negative refraction and focusing by a left-handed material slab in free space. , 2006, , .		0
345	Ultra low dark current solar blind focal plane arrays. , 2009, , .		0
346	Photonic Metamaterials: Science Meets Magic. IEEE Photonics Journal, 2010, 2, 249-252.	2.0	0
347	Developing a Transducer Based on Localized Surface Plasmon Resonance (LSPR) of Gold Nanostructures for Nanobiosensor Applications. Key Engineering Materials, 2013, 543, 393-401.	0.4	0
348	2D Anisotropic Photonic Crystals of Hollow Semiconductor Nanorod with Liquid Crystals. Applied Mechanics and Materials, 0, 394, 38-44.	0.2	0
349	Ferroelectric Based Photonic Crystal Cavity by Liquid Crystal Infiltration. Integrated Ferroelectrics, 2014, 158, 1-12.	0.7	O
350	X Band GaN Based MMIC Power Amplifier with 36.5dBm P<inf> 1 -dB</inf> for Space Applications. , 2018 , , .		0
351	Strain effects and electronic structures of narrow band P-R ferroelectrics: First principles calculation. Ferroelectrics, 2019, 544, 1-10.	0.6	O
352	Two-dimensional phononic band structure of archimedean-logarithmic spiral-based slabs. Ferroelectrics, 2019, 544, 112-118.	0.6	0
353	BaTiO3 based photonic time crystal and momentum stop band. Ferroelectrics, 2020, 557, 105-111.	0.6	0
354	Complete photonic band gaps in Sn ₂ P ₂ X ₆ (X = S, Se) supercell photonic crystals. Ferroelectrics, 2020, 557, 92-97.	0.6	0
355	Frontispiece: How to Build Prussian Blue Based Water Oxidation Catalytic Assemblies: Common Trends and Strategies. Chemistry - A European Journal, 2021, 27, .	3.3	0
356	Eighty nineâ€watt cascaded multistage power amplifier using gallium nitrideâ€onâ€silicon high electron mobility transistor for Lâ€band radar applications. IET Circuits, Devices and Systems, 2021, 15, 830.	1.4	0
357	Building an Iron Chromophore Incorporating Prussian Blue Analogue for Photoelectrochemical Water Oxidation. Chemistry - A European Journal, 2021, 27, 8890-8890.	3.3	O
358	Determining thermo-mechanical stress sources of an integrated optical device. Optik, 2021, 242, 167281.	2.9	0
359	Enhanced electro-optic modulation of LiNbO\$_{3}\$-based photonic crystal cavities with dual mode and polarization operation. Turkish Journal of Physics, 2017, 41, 303-313.	1.1	0
360	Lithography-free, manganese-based ultrabroadband absorption through annealing-based deformation of thin layers into metal–air composites. Optics Letters, 2019, 44, 3598.	3.3	0

#	Article	IF	CITATIONS
361	Experimental Analysis of Non-linear Phenomena due to Perturbation Amplitude in Ï•-OTDR Based Fiber Optic Distributed Vibration Sensor. , 2021, , .		0
362	A Simple Method for Enhancing the SNR in Direct Detection \ddot{l} †-OTDR based Distributed Acoustic Sensors. , 2020, , .		0
363	High Performance 15- <i>μ</i> m Pitch 640 × 512 MWIR InAs/GaSb Type-II Superlattice Sensors. IEEE Journal of Quantum Electronics, 2022, 58, 1-6.	1.9	O
364	Second Harmonic Generation in Generalized Ferroelectric Superlattices. Integrated Ferroelectrics, 2021, 220, 30-38.	0.7	0
365	Phononic Crystals With Archimedean-like Tiling: Band Structure and the Transformation of Sound. Integrated Ferroelectrics, 2021, 220, 132-139.	0.7	0
366	Slater Insulator Phase of X ₂ (X = Na, Li)IrO ₃ : First Principles Calculation. Integrated Ferroelectrics, 2021, 220, 80-89.	0.7	0
367	The Pulse Shape Effect on Signal-to-Noise Ratio for φ-OTDR Systems. , 2021, , .		0
368	Miniaturized and Process-Tolerant Ku-Band Power Dividers Using GaN on SiC., 2022,,.		0