John Charles Lattanzio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8595004/publications.pdf

Version: 2024-02-01

97 papers 4,084 citations

33 h-index 59 g-index

98 all docs 98 docs citations

98 times ranked 2496 citing authors

#	Article	IF	CITATIONS
1	The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars. Publications of the Astronomical Society of Australia, 0, 31, .	3.4	498
2	Stellar Models and Yields of Asymptotic Giant Branch Stars. Publications of the Astronomical Society of Australia, 2007, 24, 103-117.	3.4	256
3	Super- and massive AGB stars – IV. Final fates – initial-to-final mass relation. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2599-2612.	4.4	185
4	Deep Mixing of 3He: Reconciling Big Bang and Stellar Nucleosynthesis. Science, 2006, 314, 1580-1583.	12.6	181
5	Reaction Rate Uncertainties and the Production of 19F in Asymptotic Giant Branch Stars. Astrophysical Journal, 2004, 615, 934-946.	4.5	174
6	sâ€Process Nucleosynthesis in Asymptotic Giant Branch Stars: A Test for Stellar Evolution. Astrophysical Journal, 2003, 586, 1305-1319.	4.5	162
7	The asymptotic giant branch evolution of 1.0-3.0 solar mass stars as a function of mass and composition. Astrophysical Journal, 1986, 311, 708.	4.5	134
8	Super and massive AGB stars – II. Nucleosynthesis and yields – ZÂ=Â0.02, 0.008 and 0.004. Monthly Notices of the Royal Astronomical Society, 2013, 437, 195-214.	4.4	133
9	Silicon and Carbon Isotopic Ratios in AGB Stars: SiC Grain Data, Models, and the Galactic Evolution of the Si Isotopes. Astrophysical Journal, 2006, 650, 350-373.	4.5	125
10	Structure, Evolution, and Nucleosynthesis of Primordial Stars. Astrophysical Journal, 2002, 570, 329-343.	4.5	118
11	Compulsory Deep Mixing of ³ He and CNO Isotopes in the Envelopes of Lowâ€Mass Red Giants. Astrophysical Journal, 2008, 677, 581-592.	4.5	111
12	A LARGE C+N+O ABUNDANCE SPREAD IN GIANT STARS OF THE GLOBULAR CLUSTER NGC 1851. Astrophysical Journal, 2009, 695, L62-L66.	4.5	108
13	Super-AGB Stars and their Role as Electron Capture Supernova Progenitors. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	106
14	BEYOND MIXING-LENGTH THEORY: A STEP TOWARD 321D. Astrophysical Journal, 2015, 809, 30.	4.5	105
15	Super and massive AGB stars – III. Nucleosynthesis in metal-poor and very metal-poor stars – Z = 0.001 and 0.0001. Monthly Notices of the Royal Astronomical Society, 2014, 441, 582-598.	4.4	91
16	The treatment of mixing in core helium burning models $\hat{a}\in$ 1. Implications for asteroseismology. Monthly Notices of the Royal Astronomical Society, 2015, 452, 123-145.	4.4	91
17	Fluorine Abundance Variations in Red Giants of the Globular Cluster M4 and Earlyâ€Cluster Chemical Pollution. Astrophysical Journal, 2005, 633, 392-397.	4.5	84
18	THREE-DIMENSIONAL HYDRODYNAMICAL SIMULATIONS OF A PROTON INGESTION EPISODE IN A LOW-METALLICITY ASYMPTOTIC GIANT BRANCH STAR. Astrophysical Journal, 2011, 742, 121.	4.5	78

#	Article	IF	CITATIONS
19	Stellar origin of the ¹⁸² Hf cosmochronometer and the presolar history of solar system matter. Science, 2014, 345, 650-653.	12.6	73
20	Threeâ€dimensional Numerical Experimentation on the Core Helium Flash of Lowâ€Mass Red Giants. Astrophysical Journal, 2006, 639, 405-415.	4.5	72
21	Galactic Chemical Evolution of Lithium: Interplay between Stellar Sources. Astrophysical Journal, 2001, 559, 909-924.	4.5	70
22	On the origin of fluorine in the Milky Way. Monthly Notices of the Royal Astronomical Society, 2004, 354, 575-580.	4.4	70
23	Sodium content as a predictor of the advanced evolution of globular cluster stars. Nature, 2013, 498, 198-200.	27.8	69
24	BLUE STRAGGLERS AFTER THE MAIN SEQUENCE. Astrophysical Journal, 2009, 692, 1411-1420.	4.5	64
25	A simulation of the collapse and fragmentation of cooling molecular clouds. Astrophysical Journal, 1991, 375, 177.	4.5	63
26	Tidal Interactions between Binary Stars Can Drive Lithium Production in Low-mass Red Giants. Astrophysical Journal, 2019, 880, 125.	4.5	59
27	The depletion of carbon by extra mixing in metal-poor giants. Monthly Notices of the Royal Astronomical Society, 2009, 396, 2313-2318.	4.4	53
28	Nuclear reaction rate uncertainties and astrophysical modeling: Carbon yields from low-mass giants. Physical Review C, 2006, 73, .	2.9	48
29	THE ROLE OF THERMOHALINE MIXING IN INTERMEDIATE- AND LOW-METALLICITY GLOBULAR CLUSTERS. Astrophysical Journal, 2012, 749, 128.	4.5	47
30	Carbon dredge-up in low-mass stars and solar metallicity stars. Astrophysical Journal, 1989, 344, L25.	4.5	43
31	The treatment of mixing in core helium burning models – II. Constraints from cluster star counts. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3866-3885.	4.4	40
32	Shortâ€lived radioactivity in the early solar system: The Superâ€AGB star hypothesis. Meteoritics and Planetary Science, 2012, 47, 1998-2012.	1.6	38
33	THERMOHALINE MIXING AND ITS ROLE IN THE EVOLUTION OF CARBON AND NITROGEN ABUNDANCES IN GLOBULAR CLUSTER RED GIANTS: THE TEST CASE OF MESSIER 3. Astrophysical Journal, 2011, 728, 79.	4.5	37
34	The eccentricities of the barium stars. Monthly Notices of the Royal Astronomical Society, 2000, 316, 689-698.	4.4	35
35	ON THE NECESSITY OF COMPOSITION-DEPENDENT LOW-TEMPERATURE OPACITY IN MODELS OF METAL-POOR ASYMPTOTIC GIANT BRANCH STARS. Astrophysical Journal, 2014, 784, 56.	4.5	29
36	The treatment of mixing in core helium-burning models $\hat{a} \in \mathbb{N}$ III. Suppressing core breathing pulses with a new constraint on overshoot. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4900-4909.	4.4	29

#	Article	IF	CITATIONS
37	Stellar evolutionary models from the zero-age main sequence to the first thermal pulse. Astrophysical Journal, Supplement Series, 1991, 76, 215.	7.7	28
38	Diagnostics of stellar modelling from spectroscopy and photometry of globular clusters. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2423-2440.	4.4	27
39	Evolution, Nucleosynthesis, and Pulsation of AGB Stars. Astronomy and Astrophysics Library, 2004, , 23-104.	0.1	25
40	LITHIUM ABUNDANCES IN GLOBULAR CLUSTER GIANTS: NGC 6218 (M12) AND NGC 5904 (M5). Astrophysical Journal, 2014, 791, 39.	4.5	24
41	The formation of a 1.5-solar mass carbon star with Mbol = -4.4. Astrophysical Journal, 1987, 313, L15.	4.5	24
42	Nucleosynthesis in AGB Stars. Symposium - International Astronomical Union, 1999, 191, 31-40.	0.1	23
43	Collisions between rotating interstellar clouds. Monthly Notices of the Royal Astronomical Society, 1988, 232, 565-614.	4.4	22
44	A phenomenological modification of thermohaline mixing in globular cluster red giants. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4600-4612.	4.4	22
45	Evolution and nucleosynthesis of helium-rich asymptotic giant branch models. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2804-2821.	4.4	21
46	Hot Bottom Burning in a 5 <i>M</i> _⊙ Model. Publications of the Astronomical Society of Australia, 1992, 10, 120-121.	3.4	19
47	Why Do Low-Mass Stars Become Red Giants?. Publications of the Astronomical Society of Australia, 2009, 26, 203-208.	3.4	19
48	ON THE SERENDIPITOUS DISCOVERY OF A Li-RICH GIANT IN THE GLOBULAR CLUSTER NGC 362. Astrophysical Journal Letters, 2015, 801, L32.	8.3	19
49	Primordial to extremely metal-poor AGB and Super-AGB stars: White dwarf or supernova progenitors?. Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	15
50	Gravitational fragmentation - A comparison with W49A. Astrophysical Journal, 1991, 383, 639.	4.5	14
51	Photofission production of technetium and synthetic asymptotic giant branch evolution. Astrophysical Journal, 1989, 347, 989.	4.5	12
52	Discovery of a Metal-poor, Luminous Post-AGB Star that Failed the Third Dredge-up. Astrophysical Journal, 2017, 836, 15.	4.5	11
53	On the discovery of K-enhanced and possibly Mg-depleted stars throughout the Milky Way. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1384-1392.	4.4	9
54	Discovery of s-process enhanced stars in the LAMOST survey. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2219-2227.	4.4	9

#	Article	lF	Citations
55	A Data-driven Model of Nucleosynthesis with Chemical Tagging in a Lower-dimensional Latent Space. Astrophysical Journal, 2019, 887, 73.	4.5	9
56	Thermohaline Mixing in Extremely Metal-poor Stars. Astrophysical Journal Letters, 2018, 863, L5.	8.3	7
57	Energy generation in convective shells of low-mass, low-metallicity asymptotic giant branch stars. Astrophysical Journal, 1993, 409, 762.	4.5	6
58	The destruction of 3He by Rayleigh-Taylor instability on the first giant branch. Proceedings of the International Astronomical Union, 2006, 2, 286-293.	0.0	5
59	Uncertainties in AGB evolution and nucleosynthesis. Journal of Physics: Conference Series, 2016, 728, 022002.	0.4	5
60	Nucleosynthesis in AGB Stars: the Role of Dredge-Up and Hot Bottom Burning. Symposium - International Astronomical Union, 2003, 209, 73-81.	0.1	4
61	Which physics determines the location of the mean molecular weight minimum in red giants?. Monthly Notices of the Royal Astronomical Society, 2014, 443, 977-984.	4.4	4
62	Cosmic biology in perspective. Astrophysics and Space Science, 2019, 364, 1.	1.4	4
63	The Formation of Red Giants. Publications of the Astronomical Society of Australia, 1992, 10, 125-127.	3.4	3
64	Nucleosynthesis in Intermediate-Mass Stars. Symposium - International Astronomical Union, 2000, 177, 449-458.	0.1	3
65	The effect of grain sedimentation on stellar evolution. Monthly Notices of the Royal Astronomical Society, 1984, 207, 309-322.	4.4	2
66	Evolution and Mixing on the Agb. International Astronomical Union Colloquium, 1989, 106, 161-175.	0.1	2
67	<i>s</i> -Process Nucleosynthesis on the Asymptotic Giant Branch. Publications of the Astronomical Society of Australia, 1992, 10, 99-103.	3.4	2
68	What asteroseismology can teach us about low-mass core helium burning models. Proceedings of the International Astronomical Union, 2013, 9, 399-400.	0.0	2
69	A hydrodynamical study of fragmenting gas clouds. Symposium - International Astronomical Union, 1991, 147, 464-465.	0.1	1
70	How Binary Stars affect Galactic Chemical Evolution. Symposium - International Astronomical Union, 1999, 191, 447-452.	0.1	1
71	The Sixth Torino Workshop. Publications of the Astronomical Society of Australia, 2003, 20, vi-vi.	3.4	1
72	AGB Stars: Remaining Problems. Proceedings of the International Astronomical Union, 2018, 14, 3-8.	0.0	1

#	Article	IF	CITATIONS
73	Grain sedimentation and main sequence evolution. Symposium - International Astronomical Union, 1984, 105, 109-112.	0.1	O
74	Hydrodynamical Simulations of Collisions between Interstellar Clouds. Annals of the New York Academy of Sciences, 1990, 617, 158-177.	3.8	0
7 5	A hydrodynamical model for the fragmentation of the W49A star-forming region. Symposium - International Astronomical Union, 1991, 147, 449-450.	0.1	0
76	A hydrodynamical study of fragmenting gas clouds. Symposium - International Astronomical Union, 1991, 147, 464-465.	0.1	0
77	A hydrodynamical model for the fragmentation of the W49A star-forming region. Symposium - International Astronomical Union, 1991, 147, 449-450.	0.1	0
78	Numerical Modelling of Star Formation in GMCs. Publications of the Astronomical Society of Australia, 1992, 10, 122-124.	3.4	0
79	What Theorists Think They Know about AGB Stars. Symposium - International Astronomical Union, 2000, 177, 7-9.	0.1	0
80	Working Group on Abundances in Red Giants: (Groupe De Travail Pour Les Abondances Dans Les) Tj ETQq0 0 0 rş	gBT /Overl	ock 10 Tf 50
81	Joint Discussion 11 Pre-solar grains as astrophysical tools. Proceedings of the International Astronomical Union, 2006, 2, 339-340.	0.0	0
82	Nucleosynthesis in Binary Stars. Science, 2006, 311, 345-346.	12.6	0
83	Compulsory Deep Mixing of [sup 3]He and CNO Isotopes on the First Giant Branch. , 2007, , .		0
84	DIVISION IV / WG: ABUNDANCES IN RED GIANTS. Proceedings of the International Astronomical Union, 2007, 3, 150-150.	0.0	0
85	Single Star Progenitors for Type Ia Supernovae. , 2007, , .		0
86	Division IV Working Group: Abundances In Red Giants (Groupe Be Travail Sur Les Abondances Dans Les) Tj ETQq(O.OgBT	Oyerlock 10
87	COMMISSION 35: STELLAR CONSTITUTION. Proceedings of the International Astronomical Union, 2008, 4, 211-221.	0.0	0
88	DIVISION IV / WORKING GROUP ABUNDANCES IN RED-GIANTS. Proceedings of the International Astronomical Union, 2008, 4, 240-241.	0.0	0
89	Fifty Years of Nuclear Astrophysics: A Foreword. Publications of the Astronomical Society of Australia, 2008, 25, i-i.	3.4	0
90	The Origin of Elements Heavier than Iron: in Honour of the 70th Birthday of Roberto Gallino. Publications of the Astronomical Society of Australia, 2009, 26, i-ii.	3.4	0

#	Article	IF	CITATIONS
91	Lithium production by thermohaline mixing in low-mass, low-metallicity asymptotic giant branch stars. Proceedings of the International Astronomical Union, 2009, 5, 405-410.	0.0	O
92	COMMISSION 35: STELLAR CONSTITUTION. Proceedings of the International Astronomical Union, 2011, 7, 161-189.	0.0	0
93	WORKING GROUP on ABUNDANCES IN RED-GIANTS. Proceedings of the International Astronomical Union, 2011, 7, 196-198.	0.0	O
94	Three-dimensional modelling of proton ingestion episodes in low-mass stars. , 2012, , .		0
95	Hiding in plain sight - red supergiant imposters? Super-AGB stars. Proceedings of the International Astronomical Union, 2015, 11, 446-446.	0.0	O
96	Monash Chemical Yields Project (Monï‡ey) Element production in low- and intermediate-mass stars. Proceedings of the International Astronomical Union, 2015, 11, 164-165.	0.0	0
97	Eccentricities of the Barium Stars. Astrophysics and Space Science Library, 2001, , 117-124.	2.7	0