List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8594152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infantile SOD1 deficiency syndrome caused by a homozygous <i>SOD1</i> variant with absence of enzyme activity. Brain, 2022, 145, 872-878.	3.7	10
2	Comparing anti–aging hallmark activities of Metformin and Nano-PSO in a mouse model of genetic Creutzfeldt-Jakob Disease. Neurobiology of Aging, 2022, 110, 77-87.	1.5	3
3	Multifaceted Analyses of Isolated Mitochondria Establish the Anticancer Drug 2-Hydroxyoleic Acid as an Inhibitor of Substrate Oxidation and an Activator of Complex IV-Dependent State 3 Respiration. Cells, 2022, 11, 578.	1.8	2
4	Cytochrome c Oxidase Activity as a Metabolic Regulator in Pancreatic Beta-Cells. Cells, 2022, 11, 929.	1.8	7
5	Replicative Stress Coincides with Impaired Nuclear DNA Damage Response in COX4-1 Deficiency. International Journal of Molecular Sciences, 2022, 23, 4149.	1.8	4
6	What Can We Learn from the Parents of Children Affected with Mucopolysaccharidosis Type III-A in Israel?. Molecular Syndromology, 2022, 13, 45-49.	0.3	0
7	The role of orotic acid measurement in routine newborn screening for urea cycle disorders. Journal of Inherited Metabolic Disease, 2021, 44, 606-617.	1.7	6
8	An international classification of inherited metabolic disorders (<scp>ICIMD</scp>). Journal of Inherited Metabolic Disease, 2021, 44, 164-177.	1.7	146
9	A novel de novo heterozygous pathogenic variant in the SDHA gene results in childhood onset bilateral optic atrophy and cognitive impairment. Metabolic Brain Disease, 2021, 36, 581-588.	1.4	4
10	Upregulation of COX4-2 via HIF-1Î \pm in Mitochondrial COX4-1 Deficiency. Cells, 2021, 10, 452.	1.8	9
11	A novel homozygous MSTO1 mutation in Ashkenazi Jewish siblings with ataxia and myopathy. Journal of Human Genetics, 2021, 66, 835-840.	1.1	3
12	A recurring NFS1 pathogenic variant causes a mitochondrial disorder with variable intra-familial patient outcomes. Molecular Genetics and Metabolism Reports, 2021, 26, 100699.	0.4	5
13	Multiple Acyl-CoA Dehydrogenase Deficiency with Variable Presentation Due to a Homozygous Mutation in a Bedouin Tribe. Genes, 2021, 12, 1140.	1.0	1
14	Levodopa-responsive dystonia caused by biallelic <i>PRKN</i> exon inversion invisible to exome sequencing. Brain Communications, 2021, 3, fcab197.	1.5	5
15	Heat acclimation mediated cardioprotection is controlled by mitochondrial metabolic remodeling involving HIF-11±. Journal of Thermal Biology, 2020, 93, 102691.	1.1	8
16	Treatment of ErbB2 breast cancer by mitochondrial targeting. Cancer & Metabolism, 2020, 8, 17.	2.4	5
17	Biochemical assays of TCA cycle and β-oxidation metabolites. Methods in Cell Biology, 2020, 155, 83-120.	0.5	6
18	Large-scale implementation of pooled RNA extraction and RT-PCR for SARS-CoV-2 detection. Clinical Microbiology and Infection, 2020, 26, 1248-1253.	2.8	164

#	Article	IF	CITATIONS
19	Bezafibrate Improves Mitochondrial Fission and Function in DNM1L-Deficient Patient Cells. Cells, 2020, 9, 301.	1.8	20
20	De novo pathogenic <i>DNM1L</i> variant in a patient diagnosed with atypical hereditary sensory and autonomic neuropathy. Molecular Genetics & amp; Genomic Medicine, 2019, 7, e00961.	0.6	12
21	Mitochondrial Transfer Ameliorates Cognitive Deficits, Neuronal Loss, and Gliosis in Alzheimer's Disease Mice. Journal of Alzheimer's Disease, 2019, 72, 587-604.	1.2	70
22	Insights into deoxyribonucleoside therapy for mitochondrial TK2 deficient mtDNA depletion. EBioMedicine, 2019, 47, 14-15.	2.7	4
23	A novel TUFM homozygous variant in a child with mitochondrial cardiomyopathy expands the phenotype of combined oxidative phosphorylation deficiency 4. Journal of Human Genetics, 2019, 64, 589-595.	1.1	14
24	Primary Coenzyme Q deficiency Due to Novel ADCK3 Variants, Studies in Fibroblasts and Review of Literature. Neurochemical Research, 2019, 44, 2372-2384.	1.6	15
25	Sea squirt alternative oxidase bypasses fatal mitochondrial heart disease. EMBO Molecular Medicine, 2019, 11, .	3.3	5
26	Mitochondrial dysfunction in preclinical genetic prion disease: A target for preventive treatment?. Neurobiology of Disease, 2019, 124, 57-66.	2.1	21
27	Severe infantile epileptic encephalopathy associated with D-glyceric aciduria: report of a novel case and review. Metabolic Brain Disease, 2019, 34, 557-563.	1.4	4
28	Cytochrome c oxidase deficiency, oxidative stress, possible antioxidant therapy and link to nuclear DNA damage. European Journal of Human Genetics, 2018, 26, 579-581.	1.4	14
29	A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans. Genetics in Medicine, 2018, 20, 1004-1012.	1.1	48
30	Revisiting mitochondrial diagnostic criteria in the new era of genomics. Genetics in Medicine, 2018, 20, 444-451.	1.1	62
31	A novel homozygous <i>SLC25A1</i> mutation with impaired mitochondrial complex V: Possible phenotypic expansion. American Journal of Medical Genetics, Part A, 2018, 176, 330-336.	0.7	14
32	Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. Journal of Ovarian Research, 2018, 11, 95.	1.3	16
33	Pathogenic variants in glutamyl-tRNAGIn amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder. Nature Communications, 2018, 9, 4065.	5.8	44
34	The influence of in vivo exposure to nonylphenol ethoxylate 10 (NP-10) on the ovarian reserve in a mouse model. Reproductive Toxicology, 2018, 81, 246-252.	1.3	1
35	Opposing effects of intracellular <i>vs.</i> extracellular adenine nucleotides on autophagy: implications for β-cell function. Journal of Cell Science, 2018, 131, .	1.2	7
36	Pathological presentation of cardiac mitochondria in a rat model for chronic kidney disease. PLoS ONE, 2018, 13, e0198196.	1.1	15

#	Article	IF	CITATIONS
37	The pathomechanism of cytochrome c oxidase deficiency includes nuclear DNA damage. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 893-900.	0.5	12
38	Evaluating the therapeutic potential of idebenone and related quinone analogues in Leber hereditary optic neuropathy. Mitochondrion, 2017, 36, 36-42.	1.6	50
39	Oxidative stress elicited by modifying the ceramide acyl chain length reduces the rate of clathrin-mediated endocytosis. Journal of Cell Science, 2017, 130, 1486-1493.	1.2	15
40	Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia. European Journal of Human Genetics, 2017, 25, 1142-1146.	1.4	38
41	Mitochondrial epileptic encephalopathy, 3â€methylglutaconic aciduria and variable complex V deficiency associated with <i><scp>TIMM50</scp></i> mutations. Clinical Genetics, 2017, 91, 690-696.	1.0	28
42	The Effects of Ascorbate, N-Acetylcysteine, and Resveratrol on Fibroblasts from Patients with Mitochondrial Disorders. Journal of Clinical Medicine, 2017, 6, 1.	1.0	38
43	The Relationship between Mitochondrial Respiratory Chain Activities in Muscle and Metabolites in Plasma and Urine: A Retrospective Study. Journal of Clinical Medicine, 2017, 6, 31.	1.0	12
44	Homozygous p.V116* mutation in <i>C12orf65</i> results in Leigh syndrome. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, jnnp-2014-310084.	0.9	15
45	Complex II Deficiency. , 2016, , 265-272.		0
46	Characteristics of Mitochondrial Transformation into Human Cells. Scientific Reports, 2016, 6, 26057.	1.6	90
47	Two transgenic mouse models for β-subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations. Biochemical Journal, 2016, 473, 3463-3485.	1.7	26
48	Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous <i>OPA1</i> mutation. Journal of Medical Genetics, 2016, 53, 127-131.	1.5	91
49	Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number. American Journal of Human Genetics, 2016, 99, 860-876.	2.6	93
50	Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells. Genes and Development, 2016, 30, 1991-2004.	2.7	49
51	Mitochondrial hepato-encephalopathy due to deficiency of QIL1/MIC13 (C19orf70), a MICOS complex subunit. European Journal of Human Genetics, 2016, 24, 1778-1782.	1.4	44
52	Novel Homozygous Missense Mutation in SPG20 Gene Results in Troyer Syndrome Associated with Mitochondrial Cytochrome c Oxidase Deficiency. JIMD Reports, 2016, 33, 55-60.	0.7	15
53	Postnatal microcephaly and pain insensitivity due to a de novo heterozygous <i>DNM1L</i> mutation causing impaired mitochondrial fission and function. American Journal of Medical Genetics, Part A, 2016, 170, 1603-1607.	0.7	80
54	Upregulation of Mitochondrial Content in Cytochrome c Oxidase Deficient Fibroblasts. PLoS ONE, 2016, 11, e0165417.	1.1	29

#	Article	IF	CITATIONS
55	Weaning Triggers a Maturation Step of Pancreatic \hat{I}^2 Cells. Developmental Cell, 2015, 33, 238-239.	3.1	2
56	Development of pheochromocytoma in ceramide synthase 2 null mice. Endocrine-Related Cancer, 2015, 22, 623-632.	1.6	27
57	Weaning Triggers a Maturation Step of Pancreatic \hat{I}^2 Cells. Developmental Cell, 2015, 32, 535-545.	3.1	120
58	Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy. European Journal of Human Genetics, 2015, 23, 159-164.	1.4	82
59	Coenzyme Q–dependent mitochondrial respiratory chain activity in granulosa cells is reduced with aging. Fertility and Sterility, 2015, 104, 724-727.	0.5	45
60	Hypomyelination and developmental delay associated with <i>VPS11</i> mutation in Ashkenazi-Jewish patients. Journal of Medical Genetics, 2015, 52, 749-753.	1.5	41
61	Calmodulin Methyltransferase Is Required for Growth, Muscle Strength, Somatosensory Development and Brain Function. PLoS Genetics, 2015, 11, e1005388.	1.5	16
62	Abstract 381: Prolonged Renal Failure Leads to Reduced Number of Active Cardiac Mitochondria in a Rat Model for Long Term Chronic Kidney Disease. Circulation Research, 2015, 117, .	2.0	0
63	Measurement of troponin-T in dried blood spots and dried plasma spots: A pilot study. Journal of Pediatric Biochemistry, 2015, 04, 153-157.	0.2	0
64	Quantitative measurement of urinary glycosaminoglycans using a modified DMB method facilitates the diagnosis and monitoring of mucopolysaccharidoses. Journal of Pediatric Biochemistry, 2015, 02, 163-167.	0.2	0
65	Mutations in GTPBP3 Cause a Mitochondrial Translation Defect Associated with Hypertrophic Cardiomyopathy, Lactic Acidosis, and Encephalopathy. American Journal of Human Genetics, 2014, 95, 708-720.	2.6	123
66	Delineation of C12orf65-related phenotypes: a genotype–phenotype relationship. European Journal of Human Genetics, 2014, 22, 1019-1025.	1.4	48
67	Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy. European Journal of Human Genetics, 2014, 22, 902-906.	1.4	65
68	Mitochondria: Mitochondrial OXPHOS (dys) function ex vivo – The use of primary fibroblasts. International Journal of Biochemistry and Cell Biology, 2014, 48, 60-65.	1.2	38
69	Mitochondrial STAT3 plays a major role in IgE-antigen–mediated mast cell exocytosis. Journal of Allergy and Clinical Immunology, 2014, 134, 460-469.e10.	1.5	62
70	Ceramide and the mitochondrial respiratory chain. Biochimie, 2014, 100, 88-94.	1.3	117
71	Elevated plasma citrulline: look for dihydrolipoamide dehydrogenase deficiency. European Journal of Pediatrics, 2014, 173, 243-245.	1.3	14
72	Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency. Brain, 2014, 137, 1030-1038.	3.7	41

#	Article	IF	CITATIONS
73	IL-1β hampers glucose-stimulated insulin secretion in Cohen diabetic rat islets through mitochondrial cytochrome <i>c</i> oxidase inhibition by nitric oxide. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E648-E657.	1.8	12
74	Apoptosis-Like Death, an Extreme SOS Response in Escherichia coli. MBio, 2014, 5, e01426-14.	1.8	102
75	The effect of small molecules on nuclear-encoded translation diseases. Biochimie, 2014, 100, 184-191.	1.3	23
76	Type 2 Diabetes and Congenital Hyperinsulinism Cause DNA Double-Strand Breaks and p53 Activity in β Cells. Cell Metabolism, 2014, 19, 109-121.	7.2	123
77	PF-4708671 Activates AMPK Independently of p70S6K1 Inhibition. PLoS ONE, 2014, 9, e107364.	1.1	8
78	Mitochondrial OXPHOS function is unaffected by chronic azithromycin treatment. Journal of Cystic Fibrosis, 2013, 12, 682-687.	0.3	9
79	Agenesis of corpus callosum and optic nerve hypoplasia due to mutations in <i>SLC25A1</i> encoding the mitochondrial citrate transporter. Journal of Medical Genetics, 2013, 50, 240-245.	1.5	60
80	Dietary copper supplementation restores β-cell function of Cohen diabetic rats: a link between mitochondrial function and glucose-stimulated insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1023-E1034.	1.8	23
81	Protection of a Ceramide Synthase 2 Null Mouse from Drug-induced Liver Injury. Journal of Biological Chemistry, 2013, 288, 30904-30916.	1.6	35
82	Ablation of Ceramide Synthase 2 Causes Chronic Oxidative Stress Due to Disruption of the Mitochondrial Respiratory Chain. Journal of Biological Chemistry, 2013, 288, 4947-4956.	1.6	165
83	Infantile mitochondrial hepatopathy is a cardinal feature of MEGDEL syndrome (3â€Methylglutaconic) Tj ETQq1 1 mutations in <i>SERAC1</i> . American Journal of Medical Genetics, Part A, 2013, 161, 2204-2215.	l 0.784314 0.7	4 rgBT /Ove 39
84	The Thr224Asn mutation in the VPS45 gene is associated with the congenital neutropenia and primary myelofibrosis of infancy. Blood, 2013, 121, 5078-5087.	0.6	70
85	Replacement of the C6ORF66 Assembly Factor (NDUFAF4) Restores Complex I Activity in Patient Cells. Molecular Medicine, 2013, 19, 124-134.	1.9	22
86	Complex Subunits and Assembly Genes: Complex I. , 2013, , 185-202.		0
87	Mitochondrial performance in heat acclimation—a lesson from ischemia/reperfusion and calcium overload insults in the heart. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R870-R881.	0.9	23
88	Rat Cardiac Mitochondrial Sub-populations Show Distinct Features of Oxidative Phosphorylation during Ischemia, Reperfusion and Ischemic Preconditioning. Cellular Physiology and Biochemistry, 2012, 30, 83-94.	1.1	24
89	Toward genotype phenotype correlations in GFM1 mutations. Mitochondrion, 2012, 12, 242-247.	1.6	20
90	Human granulosa luteal cell oxidative phosphorylation function is not affected by age or ovarian response. Fertility and Sterility, 2012, 98, 166-172.e2.	0.5	22

#	Article	IF	CITATIONS
91	Leukoencephalopathy with accumulated succinate is indicative of SDHAF1 related complex II deficiency. Orphanet Journal of Rare Diseases, 2012, 7, 69.	1.2	44
92	Infantile Cerebellar-Retinal Degeneration Associated with a Mutation in Mitochondrial Aconitase, ACO2. American Journal of Human Genetics, 2012, 90, 518-523.	2.6	93
93	Combined OXPHOS complex I and IV defect, due to mutated complex I assembly factor C20ORF7. Journal of Inherited Metabolic Disease, 2012, 35, 125-131.	1.7	52
94	Control of Pancreatic Î ² Cell Regeneration by Glucose Metabolism. Cell Metabolism, 2011, 13, 440-449.	7.2	266
95	The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 625-629.	1.8	49
96	The use of individual patient's fibroblasts in the search for personalized treatment of nuclear encoded OXPHOS diseases. Molecular Genetics and Metabolism, 2011, 104, 39-47.	0.5	24
97	Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing. Molecular Genetics and Metabolism, 2011, 104, 517-520.	0.5	89
98	Screening for Active Small Molecules in Mitochondrial Complex I Deficient Patient's Fibroblasts, Reveals AICAR as the Most Beneficial Compound. PLoS ONE, 2011, 6, e26883.	1.1	95
99	Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy. European Journal of Human Genetics, 2011, 19, 394-399.	1.4	90
100	TMEM70 mutations are a common cause of nuclear encoded ATP synthase assembly defect: further delineation of a new syndrome. Journal of Medical Genetics, 2011, 48, 177-182.	1.5	61
101	2-hydroxylated sphingomyelin profiles in cells from patients with mutated fatty acid 2-hydroxylase. Lipids in Health and Disease, 2011, 10, 84.	1.2	23
102	αâ€ 5 ynuclein abnormalities in mouse models of peroxisome biogenesis disorders. Journal of Neuroscience Research, 2010, 88, 866-876.	1.3	36
103	Cytogenetic analyses of premature ovarian failure using karyotyping and interphase fluorescence <i>in situ</i> hybridization (FISH) in a group of 1000 patients. Clinical Genetics, 2010, 78, 181-185.	1.0	47
104	Acute Infantile Liver Failure Due to Mutations in the TRMU Gene. American Journal of Human Genetics, 2010, 86, 295.	2.6	0
105	Familial neonatal isolated cardiomyopathy caused by a mutation in the flavoprotein subunit of succinate dehydrogenase. European Journal of Human Genetics, 2010, 18, 1160-1165.	1.4	100
106	The Transgenic Overexpression of α-Synuclein and Not Its Related Pathology Associates with Complex I Inhibition. Journal of Biological Chemistry, 2010, 285, 7334-7343.	1.6	96
107	The Effect of Antiepileptic Drugs on Mitochondrial Activity: A Pilot Study. Journal of Child Neurology, 2010, 25, 541-545.	0.7	44
108	Leigh disease presenting in utero due to a novel missense mutation in the mitochondrial DNA–ND3. Molecular Genetics and Metabolism, 2010, 100, 65-70.	0.5	22

#	Article	IF	CITATIONS
109	l-arginine:glycine amidinotransferase (AGAT) deficiency: Clinical presentation and response to treatment in two patients with a novel mutation. Molecular Genetics and Metabolism, 2010, 101, 228-232.	0.5	44
110	Mice Deficient in Ribosomal Protein S6 Phosphorylation Suffer from Muscle Weakness that Reflects a Growth Defect and Energy Deficit. PLoS ONE, 2009, 4, e5618.	1.1	92
111	Nonylphenol Ethoxylate Plastic Additives Inhibit Mitochondrial Respiratory Chain Complex I. Clinical Chemistry, 2009, 55, 1883-1884.	1.5	23
112	Mutated NDUFS6 is the cause of fatal neonatal lactic acidemia in Caucasus Jews. European Journal of Human Genetics, 2009, 17, 1200-1203.	1.4	41
113	Mutations in LPIN1 Cause Recurrent Acute Myoglobinuria in Childhood. American Journal of Human Genetics, 2009, 84, 95.	2.6	1
114	Exocrine Pancreatic Insufficiency, Dyserythropoeitic Anemia, and Calvarial Hyperostosis Are Caused by a Mutation in the COX4I2 Gene. American Journal of Human Genetics, 2009, 84, 412-417.	2.6	78
115	Mutations in NDUFAF3 (C3ORF60), Encoding an NDUFAF4 (C6ORF66)-Interacting Complex I Assembly Protein, Cause Fatal Neonatal Mitochondrial Disease. American Journal of Human Genetics, 2009, 84, 718-727.	2.6	155
116	Acute Infantile Liver Failure Due to Mutations in the TRMU Gene. American Journal of Human Genetics, 2009, 85, 401-407.	2.6	205
117	NDUFS4 mutations cause Leigh syndrome with predominant brainstem involvement. Molecular Genetics and Metabolism, 2009, 97, 185-189.	0.5	54
118	Antibiotic effects on mitochondrial translation and in patients with mitochondrial translational defects. Mitochondrion, 2009, 9, 429-437.	1.6	37
119	Fishing in the (deoxyribonucleotide) pool. Biochemical Journal, 2009, 422, e3-e6.	1.7	11
120	Heat acclimation improves mitochondrial function following ischemia reperfusion insult. FASEB Journal, 2009, 23, 793.7.	0.2	1
121	Cardiac-Targeted Transgenic Mutant Mitochondrial Enzymes: mtDNA Defects, Antiretroviral Toxicity and Cardiomyopathy. Cardiovascular Toxicology, 2008, 8, 57-69.	1.1	17
122	Mitochondrial complex I deficiency caused by a deleterious NDUFA11 mutation. Annals of Neurology, 2008, 63, 405-408.	2.8	103
123	FASTKD2 Nonsense Mutation in an Infantile Mitochondrial Encephalomyopathy Associated with Cytochrome C Oxidase Deficiency. American Journal of Human Genetics, 2008, 83, 415-423.	2.6	107
124	Mutations in LPIN1 Cause Recurrent Acute Myoglobinuria in Childhood. American Journal of Human Genetics, 2008, 83, 489-494.	2.6	189
125	Mutations in the Fatty Acid 2-Hydroxylase Gene Are Associated with Leukodystrophy with Spastic Paraparesis and Dystonia. American Journal of Human Genetics, 2008, 83, 643-648.	2.6	193
126	The effect of mutated mitochondrial ribosomal proteins S16 and S22 on the assembly of the small and large ribosomal subunits in human mitochondria. Mitochondrion, 2008, 8, 254-261.	1.6	62

#	Article	IF	CITATIONS
127	C6ORF66 Is an Assembly Factor of Mitochondrial Complex I. American Journal of Human Genetics, 2008, 82, 32-38.	2.6	155
128	Mitochondrial Complex III Deficiency Associated with a Homozygous Mutation in UQCRQ. American Journal of Human Genetics, 2008, 82, 1211-1216.	2.6	114
129	The unique neuroradiology of complex I deficiency due to NDUFA12L defect. Molecular Genetics and Metabolism, 2008, 94, 78-82.	0.5	46
130	Mitochondrial deoxyribonucleotide pools in deoxyguanosine kinase deficiency. Molecular Genetics and Metabolism, 2008, 95, 169-173.	0.5	33
131	TAT-mediated Delivery of LAD Restores Pyruvate Dehydrogenase Complex Activity in the Mitochondria of Patients with LAD Deficiency. Molecular Therapy, 2008, 16, 691-697.	3.7	38
132	Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation. Journal of Medical Genetics, 2007, 44, 784-786.	1.5	144
133	Deleterious Mutation in the Mitochondrial Arginyl–Transfer RNA Synthetase Gene Is Associated with Pontocerebellar Hypoplasia. American Journal of Human Genetics, 2007, 81, 857-862.	2.6	306
134	Novel selective human mitochondrial kinase inhibitors: Design, synthesis and enzymatic activity. Bioorganic and Medicinal Chemistry, 2007, 15, 3065-3081.	1.4	8
135	Severe infantile type of carnitine palmitoyltransferase II (CPT II) deficiency due to homozygous R503C mutation. Journal of Inherited Metabolic Disease, 2007, 30, 266-266.	1.7	6
136	Distinct Clinical Phenotypes Associated with a Mutation in the Mitochondrial Translation Elongation Factor EFTs. American Journal of Human Genetics, 2006, 79, 869-877.	2.6	169
137	A novel thiol antioxidant that crosses the blood brain barrier protects dopaminergic neurons in experimental models of Parkinson's disease. European Journal of Neuroscience, 2005, 21, 637-646.	1.2	59
138	Deficiency of the ADP-Forming Succinyl-CoA Synthase Activity Is Associated with Encephalomyopathy and Mitochondrial DNA Depletion. American Journal of Human Genetics, 2005, 76, 1081-1086.	2.6	284
139	Fulminant neurological deterioration in a neonate with Leigh syndrome due to a maternally transmitted missense mutation in the mitochondrial ND3 gene. Biochemical and Biophysical Research Communications, 2005, 334, 582-587.	1.0	32
140	Nemaline Rods and Complex I Deficiency in Three Infants with Hypotonia, Motor Delay and Failure to Thrive. Neuropediatrics, 2004, 35, 302-306.	0.3	21
141	Deoxyribonucleotides and Disorders of Mitochondrial DNA Integrity. DNA and Cell Biology, 2004, 23, 797-806.	0.9	41
142	Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Annals of Neurology, 2004, 56, 734-738.	2.8	205
143	Evaluation of enzymatic assays and compounds affecting ATP production in mitochondrial respiratory chain complex I deficiency. Analytical Biochemistry, 2004, 335, 66-72.	1.1	56
144	Deoxyribonucleoside Kinases in Mitochondrial DNA Depletion. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1205-1215.	0.4	16

ANN SAADA

#	Article	IF	CITATIONS
145	Mitochondrial deoxyribonucleoside triphosphate pools in thymidine kinase 2 deficiency. Biochemical and Biophysical Research Communications, 2003, 310, 963-966.	1.0	41
146	mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency. Molecular Genetics and Metabolism, 2003, 79, 1-5.	0.5	89
147	Kinetic Properties of Mutant Human Thymidine Kinase 2 Suggest a Mechanism for Mitochondrial DNA Depletion Myopathy. Journal of Biological Chemistry, 2003, 278, 6963-6968.	1.6	69
148	Clinical Characteristics and Muscle Pathology in Myopathic Mitochondrial DNA Depletion. Journal of Child Neurology, 2002, 17, 499-504.	0.7	13
149	Depletion of the other genome-mitochondrial DNA depletion syndromes in humans. Journal of Molecular Medicine, 2002, 80, 389-396.	1.7	54
150	Fibroblasts that Reside in Mouse and Frog Injured Peripheral Nerves Produce Apolipoproteins. Journal of Neurochemistry, 2002, 64, 1996-2003.	2.1	15
151	Reversible fulminant lactic acidosis and liver failure in an infant with hepatic cytochrome-c oxidase deficiency. Journal of Inherited Metabolic Disease, 2002, 25, 371-377.	1.7	6
152	Effect of various agents on adenosine triphosphate synthesis in mitochondrial complex I deficiency. Journal of Pediatrics, 2001, 139, 868-870.	0.9	28
153	Antenatal presentation of carnitine palmitoyltransferase II deficiency. American Journal of Medical Genetics Part A, 2001, 102, 183-187.	2.4	50
154	The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nature Genetics, 2001, 29, 337-341.	9.4	521
155	Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nature Genetics, 2001, 29, 342-344.	9.4	551
156	ATP Synthesis in Lipoamide Dehydrogenase Deficiency. Biochemical and Biophysical Research Communications, 2000, 269, 382-386.	1.0	22
157	Molecular basis of lipoamide dehydrogenase deficiency in Ashkenazi Jews. , 1999, 82, 177-182.		87
158	Lipoamide Dehydrogenase Deficiency Due to a Novel Mutation in the Interface Domain. Biochemical and Biophysical Research Communications, 1999, 262, 163-166.	1.0	51
159	Mitochondrial respiratory enzymes are a major target of iron toxicity in rat heart cells. Translational Research, 1998, 131, 466-474.	2.4	74
160	The cytokine network of Wallerian degeneration: IL-10 and GM-CSF. European Journal of Neuroscience, 1998, 10, 2707-2713.	1.2	73
161	Mitochondrial Encephalomyopathy Associated with a Novel Mutation in the Mitochondrial tRNAleu(UUR)Gene (A3243T). Biochemical and Biophysical Research Communications, 1997, 233, 637-639.	1.0	36
162	Lipoamide dehydrogenase deficiency in Ashkenazi Jews: An insertion mutation in the mitochondrial		25

leader sequence. , 1997, 10, 256-257.

#	Article	IF	CITATIONS
163	Liver Disease in the Ashkenazi-Jewish Lipoamide Dehydrogenase Deficiency. Journal of Pediatric Gastroenterology and Nutrition, 1997, 24, 599-601.	0.9	19
164	Lipoamide dehydrogenase activity in lymphocytes. Clinica Chimica Acta, 1996, 256, 197-201.	0.5	16
165	Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells Journal of Cell Biology, 1996, 133, 159-167.	2.3	100
166	Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: phagocytosis and the galactose-specific lectin MAC-2. Journal of Neuroscience, 1994, 14, 3231-3245.	1.7	208
167	Lesion-Induced Changes in the Production of Newly Synthesized and Secreted Apo-E and Other Molecules Are Independent of the Concomitant Recruitment of Blood-Borne Macrophages into Injured Peripheral Nerves. Journal of Neurochemistry, 1992, 59, 1287-1292.	2.1	26
168	Adherence of Ureaplasma urealyticum to human erythrocytes. Infection and Immunity, 1991, 59, 467-469.	1.0	23
169	Glycosidase Activities of Mycoplasmas. Zentralblatt Fur Bakteriologie: International Journal of Medical Microbiology, 1990, 273, 300-305.	0.5	12
170	Interaction of a monoclonal antibody with the urease ofUreaplasma urealyticum. FEMS Microbiology Letters, 1988, 55, 187-190.	0.7	2
171	TAT-mediated Delivery of LAD Restores Pyruvate Dehydrogenase Complex Activity in the Mitochondria of Patients with LAD Deficiency. Molecular Therapy, Q	3.7	0