Jamie I Fletcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8593636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	"We Have All This Knowledge to Give, So Use Us as a Resource†Partnering with Adolescent and Young Adult Cancer Survivors to Determine Consumer-Led Research Priorities. Journal of Adolescent and Young Adult Oncology, 2022, 11, 211-222.	0.7	6
2	Whole-genome sequencing facilitates patient-specific quantitative PCR-based minimal residual disease monitoring in acute lymphoblastic leukaemia, neuroblastoma and Ewing sarcoma. British Journal of Cancer, 2022, 126, 482-491.	2.9	7
3	miR-99b-5p, miR-380-3p, and miR-485-3p are novel chemosensitizing miRNAs in high-risk neuroblastoma. Molecular Therapy, 2022, 30, 1119-1134.	3.7	5
4	GSH facilitates the binding and inhibitory activity of novel multidrug resistance protein 1 (MRP1) modulators. FEBS Journal, 2022, 289, 3854-3875.	2.2	6
5	<i>In vitro</i> and <i>in vivo</i> drug screens of tumor cells identify novel therapies for highâ€risk child cancer. EMBO Molecular Medicine, 2022, 14, e14608.	3.3	12
6	Targeted Therapy of <i>TERT</i> -Rearranged Neuroblastoma with BET Bromodomain Inhibitor and Proteasome Inhibitor Combination Therapy. Clinical Cancer Research, 2021, 27, 1438-1451.	3.2	20
7	Preclinical small molecule WEHI-7326 overcomes drug resistance and elicits response in patient-derived xenograft models of human treatment-refractory tumors. Cell Death and Disease, 2021, 12, 268.	2.7	2
8	Dual Targeting of Chromatin Stability By The Curaxin CBL0137 and Histone Deacetylase Inhibitor Panobinostat Shows Significant Preclinical Efficacy in Neuroblastoma. Clinical Cancer Research, 2021, 27, 4338-4352.	3.2	14
9	A Primer for Assessing the Pathology in Mouse Models of Neuroblastoma. Current Protocols, 2021, 1, e310.	1.3	1
10	Methodological advances in the discovery of novel neuroblastoma therapeutics. Expert Opinion on Drug Discovery, 2021, , 1-13.	2.5	5
11	Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition. Drug Resistance Updates, 2021, 59, 100795.	6.5	38
12	Accelerating development of high-risk neuroblastoma patient-derived xenograft models for preclinical testing and personalised therapy. British Journal of Cancer, 2020, 122, 680-691.	2.9	28
13	CCI52 sensitizes tumors to 6-mercaptopurine and inhibits MYCN-amplified tumor growth. Biochemical Pharmacology, 2020, 172, 113770.	2.0	2
14	CD30 and ALK combination therapy has high therapeutic potency in RANBP2-ALK-rearranged epithelioid inflammatory myofibroblastic sarcoma. British Journal of Cancer, 2020, 123, 1101-1113.	2.9	17
15	Suppression of ABCE1-Mediated mRNA Translation Limits N-MYC–Driven Cancer Progression. Cancer Research, 2020, 80, 3706-3718.	0.4	15
16	Targeting Functional Activity of AKT Has Efficacy against Aggressive Neuroblastoma. ACS Pharmacology and Translational Science, 2020, 3, 148-160.	2.5	5
17	Targeting metabolic activity in high-risk neuroblastoma through Monocarboxylate Transporter 1 (MCT1) inhibition. Oncogene, 2020, 39, 3555-3570.	2.6	23
18	Combination therapy with the CDK7 inhibitor and the tyrosine kinase inhibitor exerts synergistic anticancer effects against <i>MYCN</i> â€amplified neuroblastoma. International Journal of Cancer, 2020, 147, 1928-1938.	2.3	28

JAMIE I FLETCHER

#	Article	IF	CITATIONS
19	Mouse models of high-risk neuroblastoma. Cancer and Metastasis Reviews, 2020, 39, 261-274.	2.7	17
20	MRP1 modulators synergize with buthionine sulfoximine to exploit collateral sensitivity and selectively kill MRP1-expressing cancer cells. Biochemical Pharmacology, 2019, 168, 237-248.	2.0	29
21	Inhibition of polyamine synthesis and uptake reduces tumor progression and prolongs survival in mouse models of neuroblastoma. Science Translational Medicine, 2019, 11, .	5.8	99
22	The Australian and New Zealand Children's Haematology/Oncology Group Biobanking Network. Biopreservation and Biobanking, 2019, 17, 95-97.	0.5	2
23	Drugging MYCN Oncogenic Signaling through the MYCN-PA2G4 Binding Interface. Cancer Research, 2019, 79, 5652-5667.	0.4	24
24	Too many targets, not enough patients: rethinking neuroblastoma clinical trials. Nature Reviews Cancer, 2018, 18, 389-400.	12.8	67
25	A Myc Activity Signature Predicts Poor Clinical Outcomes in Myc-Associated Cancers. Cancer Research, 2017, 77, 971-981.	0.4	90
26	Suppression of the ATP-binding cassette transporter ABCC4 impairs neuroblastoma tumour growth and sensitises to irinotecan inAvivo. European Journal of Cancer, 2017, 83, 132-141.	1.3	24
27	ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resistance Updates, 2016, 26, 1-9.	6.5	316
28	Glutathione biosynthesis is upregulated at the initiation of MYCNâ€driven neuroblastoma tumorigenesis. Molecular Oncology, 2016, 10, 866-878.	2.1	23
29	<i>MYC</i> -Driven Neuroblastomas Are Addicted to a Telomerase-Independent Function of Dyskerin. Cancer Research, 2016, 76, 3604-3617.	0.4	38
30	The long noncoding RNA MALAT1 promotes tumor-driven angiogenesis by up-regulating pro-angiogenic gene expression. Oncotarget, 2016, 7, 8663-8675.	0.8	97
31	Identification of new MRP4 inhibitors from a library of FDA approved drugs using a high-throughput bioluminescence screen. Biochemical Pharmacology, 2015, 93, 380-388.	2.0	27
32	<i>MYCN</i> amplification confers enhanced folate dependence and methotrexate sensitivity in neuroblastoma. Oncotarget, 2015, 6, 15510-15523.	0.8	13
33	High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4). Biochemical Pharmacology, 2014, 91, 97-108.	2.0	53
34	N-Myc Regulates Expression of the Detoxifying Enzyme Glutathione Transferase <i>GSTP1</i> , a Marker of Poor Outcome in Neuroblastoma. Cancer Research, 2012, 72, 845-853.	0.4	11
35	Targeting Multidrug Resistance in Neuroblastoma. Pediatric Cancer, 2012, , 115-123.	0.0	1
36	ABCC Multidrug Transporters in Childhood Neuroblastoma: Clinical and Biological Effects Independent of Cytotoxic Drug Efflux. Journal of the National Cancer Institute, 2011, 103, 1236-1251.	3.0	113

Jamie I Fletcher

#	Article	IF	CITATIONS
37	ABC transporters in cancer: more than just drug efflux pumps. Nature Reviews Cancer, 2010, 10, 147-156.	12.8	920
38	Structural Basis for Apoptosis Inhibition by Epstein-Barr Virus BHRF1. PLoS Pathogens, 2010, 6, e1001236.	2.1	99
39	Discovery of Inhibitors of Lupin Diadenosine 5′,5′′′a€²- <i>P</i> ¹ , <i>P</i> ⁴ -Tetraphosphate Hydrolase by Virtual Screening. Biochemistry, 2009, 48, 7614-7620.	1.2	7
40	Controlling the cell death mediators Bax and Bak: puzzles and conundrums. Cell Cycle, 2008, 7, 39-44.	1.3	58
41	Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18081-18087.	3.3	162
42	Programmed Anuclear Cell Death Delimits Platelet Life Span. Cell, 2007, 128, 1173-1186.	13.5	910
43	Apoptosis Initiated When BH3 Ligands Engage Multiple Bcl-2 Homologs, Not Bax or Bak. Science, 2007, 315, 856-859.	6.0	1,021
44	Letter to the Editor: 1H, 13C, and 15N resonance assignments of the 17 kDa Ap4A hydrolase from Homo sapiens in the presence and absence of ATP. Journal of Biomolecular NMR, 2005, 31, 181-182.	1.6	0
45	Calcium-dependent Plasma Membrane Binding and Cell Lysis by Perforin Are Mediated through Its C2 Domain. Journal of Biological Chemistry, 2005, 280, 8426-8434.	1.6	131
46	Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes and Development, 2005, 19, 1294-1305.	2.7	1,071
47	Differential Targeting of Prosurvival Bcl-2 Proteins by Their BH3-Only Ligands Allows Complementary Apoptotic Function. Molecular Cell, 2005, 17, 393-403.	4.5	1,639
48	The αM1 segment of the nicotinic acetylcholine receptor exhibits conformational flexibility in a membrane environment. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1665, 40-47.	1.4	19
49	The Structure of Ap4A Hydrolase Complexed with ATP-MgFx Reveals the Basis of Substrate Binding. Structure, 2002, 10, 205-213.	1.6	30
50	Functional Significance of the β-Hairpin in the Insecticidal Neurotoxin ω-Atracotoxin-Hv1a. Journal of Biological Chemistry, 2001, 276, 26568-26576.	1.6	66
51	Structure-function studies of omega-atracotoxin, a potent antagonist of insect voltage-gated calcium channels. FEBS Journal, 1999, 264, 488-494.	0.2	79
52	High-resolution solution structure of gurmarin, a sweet-taste-suppressing plant polypeptide. FEBS Journal, 1999, 264, 525-533.	0.2	29
53	Spider toxins: A new group of potassium channel modulators. Journal of Computer - Aided Molecular Design, 1999, 15/16, 61-69.	1.0	0
54	Solution structure of a defensin-like peptide from platypus venom. Biochemical Journal, 1999, 341, 785-794.	1.7	57

#	Article	IF	CITATIONS
55	The structure of a novel insecticidal neurotoxin, ï‰-atracotoxin-HV1, from the venom of an Australian funnel web spider. Nature Structural Biology, 1997, 4, 559-566.	9.7	172
56	The structure of versutoxin (δ-atracotoxin-Hv1) provides insights into the binding of site 3 neurotoxins to the voltage-gated sodium channel. Structure, 1997, 5, 1525-1535.	1.6	115