Michael C Ostrowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8593032/publications.pdf

Version: 2024-02-01

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	PTEN in cancer associated fibroblasts. Advances in Cancer Research, 2022, 154, 203-226.	5.0	3
2	Origin, activation and heterogeneity of fibroblasts associated with pancreas and breast cancers. Advances in Cancer Research, 2022, 154, 169-201.	5.0	0
3	Stromal p53 Regulates Breast Cancer Development, the Immune Landscape, and Survival in an Oncogene-Specific Manner. Molecular Cancer Research, 2022, 20, 1233-1246.	3.4	3
4	STAT3 in tumor fibroblasts promotes an immunosuppressive microenvironment in pancreatic cancer. Life Science Alliance, 2022, 5, e202201460.	2.8	19
5	Stromal Platelet–Derived Growth Factor Receptor-β Signaling Promotes Breast Cancer Metastasis in the Brain. Cancer Research, 2021, 81, 606-618.	0.9	32
6	Hepatocyte-specific PKC \hat{l}^2 deficiency protects against high-fat diet-induced nonalcoholic hepatic steatosis. Molecular Metabolism, 2021, 44, 101133.	6.5	6
7	Pten regulates collagen fibrillogenesis by fibroblasts through SPARC. PLoS ONE, 2021, 16, e0245653.	2.5	8
8	Regulation of Breast Cancer Progression by Small G Proteins. FASEB Journal, 2021, 35, .	0.5	0
9	Targeting the KRAS α4-α5 allosteric interface inhibits pancreatic cancer tumorigenesis. Small GTPases, 2021, , 1-14.	1.6	11
10	PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis. Nature Communications, 2021, 12, 3444.	12.8	39
11	The small G-protein RalA promotes progression and metastasis of triple-negative breast cancer. Breast Cancer Research, 2021, 23, 65.	5.0	5
12	Defining the Tumor Microenvironment by Integration of Immunohistochemistry and Extracellular Matrix Targeted Imaging Mass Spectrometry. Cancers, 2021, 13, 4419.	3.7	14
13	Role of hepatic PKC \hat{I}^2 in nutritional regulation of hepatic glycogen synthesis. JCI Insight, 2021, 6, .	5.0	6
14	Abstract PO-114: STAT3 in cancer-associated fibroblasts promotes an immunosuppressive tumor microenvironment. , 2021, , .		0
15	Abstract PR-013: The splanchnic mesenchyme during fetal development is the major source of pancreatic cancer associated fibroblasts. , 2021, , .		O
16	Combinatorial ETS1-Dependent Control of Oncogenic NOTCH1 Enhancers in T-cell Leukemia. Blood Cancer Discovery, 2020, 1, 178-197.	5.0	11
17	Modeling Human Cancer-induced Cachexia. Cell Reports, 2019, 28, 1612-1622.e4.	6.4	94
18	PTEN in the Stroma. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a036111.	6.2	10

#	Article	IF	CITATIONS
19	BSCI-11. STROMAL PLATELET DERIVED GROWTH FACTOR RECEPTOR-β (PDGFRβ) PROMOTES BREAST CANCER BRAIN METASTASIS. Neuro-Oncology Advances, 2019, 1, i3-i3.	0.7	O
20	Two Distinct E2F Transcriptional Modules Drive Cell Cycles and Differentiation. Cell Reports, 2019, 27, 3547-3560.e5.	6.4	41
21	Loss of PTEN Accelerates NKX3.1 Degradation to Promote Prostate Cancer Progression. Cancer Research, 2019, 79, 4124-4134.	0.9	21
22	Nanofiber-expanded human CD34+ cells heal cutaneous wounds in streptozotocin-induced diabetic mice. Scientific Reports, 2019, 9, 8415.	3.3	22
23	Stromal PTEN Regulates Extracellular Matrix Organization in the Mammary Gland. Neoplasia, 2019, 21, 132-145.	5.3	35
24	Eomes partners with PU.1 and MITF to Regulate Transcription Factors Critical for osteoclast differentiation. IScience, 2019, 11, 238-245.	4.1	18
25	Endothelial-specific deletion of Ets-1 attenuates Angiotensin II-induced cardiac fibrosis via suppression of endothelial-to-mesenchymal transition. BMB Reports, 2019, 52, 595-600.	2.4	24
26	Enhancer variants reveal a conserved transcription factor network governed by PU.1 during osteoclast differentiation. Bone Research, 2018, 6, 8.	11.4	30
27	<i>Csf1r</i> -mApple Transgene Expression and Ligand Binding In Vivo Reveal Dynamics of CSF1R Expression within the Mononuclear Phagocyte System. Journal of Immunology, 2018, 200, 2209-2223.	0.8	75
28	Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation. Oncogene, 2018, 37, 4428-4442.	5.9	95
29	Synthetic Lethality of PARP Inhibition and Ionizing Radiation is p53-dependent. Molecular Cancer Research, 2018, 16, 1092-1102.	3.4	32
30	IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut, 2018, 67, 320-332.	12.1	381
31	PTEN expression by an oncolytic herpesvirus directs T-cell mediated tumor clearance. Nature Communications, 2018, 9, 5006.	12.8	45
32	Pyruvate kinase M2 regulates homologous recombination-mediated DNA double-strand break repair. Cell Research, 2018, 28, 1090-1102.	12.0	51
33	Stromal PTEN determines mammary epithelial response to radiotherapy. Nature Communications, 2018, 9, 2783.	12.8	17
34	Disruption of stromal hedgehog signaling initiates RNF5-mediated proteasomal degradation of PTEN and accelerates pancreatic tumor growth. Life Science Alliance, 2018, 1, e201800190.	2.8	33
35	The ETS1 Transcription Factor Is Implicated in Human and Murine Intermediate NK Cell Development Stages. Blood, 2018, 132, 2567-2567.	1.4	O
36	Ets1 Enhances Context-Dependent Notch1 Activity in T-Cell Leukemia. Blood, 2018, 132, 2595-2595.	1.4	0

#	Article	IF	CITATIONS
37	Stromal PDGFR-α Activation Enhances Matrix Stiffness, Impedes Mammary Ductal Development, and Accelerates Tumor Growth. Neoplasia, 2017, 19, 496-508.	5.3	50
38	The ETS family of oncogenic transcription factors in solid tumours. Nature Reviews Cancer, 2017, 17, 337-351.	28.4	234
39	Inhibition of Jak/STAT signaling reduces the activation of pancreatic stellate cells in vitro and limits caerulein-induced chronic pancreatitis in vivo. Scientific Reports, 2017, 7, 1787.	3.3	65
40	Discovery of Stromal Regulatory Networks that Suppress Ras-Sensitized Epithelial Cell Proliferation. Developmental Cell, 2017, 41, 392-407.e6.	7.0	25
41	Integrative genome analysis of somatic p53 mutant osteosarcomas identifies Ets2-dependent regulation of small nucleolar RNAs by mutant p53 protein. Genes and Development, 2017, 31, 1847-1857.	5.9	48
42	IL-18 Drives ILC3 Proliferation and Promotes IL-22 Production via NF-κB. Journal of Immunology, 2017, 199, 2333-2342.	0.8	80
43	Generation of a pancreatic cancer model using a Pdx1-Flp recombinase knock-in allele. PLoS ONE, 2017, 12, e0184984.	2.5	16
44	Stromal ETS2 Regulates Chemokine Production and Immune Cell Recruitment during Acinar-to-Ductal Metaplasia. Neoplasia, 2016, 18, 541-552.	5.3	25
45	Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar–ductal metaplasia. Genes and Development, 2016, 30, 1943-1955.	5.9	46
46	Failure to Target RANKL Signaling Through p38â€MAPK Results in Defective Osteoclastogenesis in the Microphthalmia Cloudyâ€Eyed Mutant. Journal of Cellular Physiology, 2016, 231, 630-640.	4.1	7
47	FGFR and PTEN signaling interact during lens development to regulate cell survival. Developmental Biology, 2016, 410, 150-163.	2.0	22
48	E2f3 in tumor macrophages promotes lung metastasis. Oncogene, 2016, 35, 3636-3646.	5.9	48
49	RAGE Mediates S100A7-Induced Breast Cancer Growth and Metastasis by Modulating the Tumor Microenvironment. Cancer Research, 2015, 75, 974-985.	0.9	112
50	Changes in BAI1 and Nestin Expression Are Prognostic Indicators for Survival and Metastases in Breast Cancer and Provide Opportunities for Dual Targeted Therapies. Molecular Cancer Therapeutics, 2015, 14, 307-314.	4.1	26
51	Noncatalytic <i>PTEN</i> missense mutation predisposes to organ-selective cancer development in vivo. Genes and Development, 2015, 29, 1707-1720.	5.9	29
52	CSF1-ETS2-induced microRNA in myeloid cells promote metastatic tumor growth. Oncogene, 2015, 34, 3651-3661.	5.9	60
53	Cry Protein Crystals: A Novel Platform for Protein Delivery. PLoS ONE, 2015, 10, e0127669.	2.5	20
54	Single agent BMS-911543 Jak2 inhibitor has distinct inhibitory effects on STAT5 signaling in genetically engineered mice with pancreatic cancer. Oncotarget, 2015, 6, 44509-44522.	1.8	15

#	Article	IF	CITATIONS
55	Protein Kinase C Beta in the Tumor Microenvironment Promotes Mammary Tumorigenesis. Frontiers in Oncology, 2014, 4, 87.	2.8	23
56	The Multifunctional Protein Fused in Sarcoma (FUS) Is a Coactivator of Microphthalmia-associated Transcription Factor (MITF). Journal of Biological Chemistry, 2014, 289, 326-334.	3.4	21
57	Extracellular Vesicles Modulate the Glioblastoma Microenvironment via a Tumor Suppression Signaling Network Directed by miR-1. Cancer Research, 2014, 74, 738-750.	0.9	197
58	MicroRNA 17-92 Cluster Mediates ETS1 and ETS2-Dependent RAS-Oncogenic Transformation. PLoS ONE, 2014, 9, e100693.	2.5	19
59	Systemic Delivery of SapC-DOPS Has Antiangiogenic and Antitumor Effects Against Glioblastoma. Molecular Therapy, 2013, 21, 1517-1525.	8.2	45
60	<i>SRGAP1</i> Is a Candidate Gene for Papillary Thyroid Carcinoma Susceptibility. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E973-E980.	3.6	74
61	Inhibitor κB Kinase 2 Is a Myosin Light Chain Kinase in Vascular Smooth Muscle. Circulation Research, 2013, 113, 562-570.	4.5	16
62	Ets2 in Tumor Fibroblasts Promotes Angiogenesis in Breast Cancer. PLoS ONE, 2013, 8, e71533.	2.5	33
63	MicroRNA-128 coordinately targets Polycomb Repressor Complexes in glioma stem cells. Neuro-Oncology, 2013, 15, 1212-1224.	1.2	104
64	Crystallizing the functional specificity of <scp>MITF</scp> . Pigment Cell and Melanoma Research, 2013, 26, 158-159.	3.3	0
65	Transcription factor ATF3 links host adaptive response to breast cancer metastasis. Journal of Clinical Investigation, 2013, 123, 2893-2906.	8.2	109
66	Setting Snail2's pace during EMT. Nature Cell Biology, 2012, 14, 1122-1123.	10.3	10
67	Role for Ets-2Thr-72 Transcription Factor in Stage-specific Thymocyte Development and Survival. Journal of Biological Chemistry, 2012, 287, 5199-5210.	3.4	6
68	Loss of Fibroblast HIF-1α Accelerates Tumorigenesis. Cancer Research, 2012, 72, 3187-3195.	0.9	55
69	Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nature Cell Biology, 2012, 14, 159-167.	10.3	251
70	NF-kappaB activation within macrophages leads to an anti-tumor phenotype in a mammary tumor lung metastasis model. Breast Cancer Research, 2011, 13, R83.	5.0	52
71	Transcription Factor ets-2 Plays an Important Role in the Pathogenesis of Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 999-1006.	2.9	18
72	NF-κB Signaling in Fetal Lung Macrophages Disrupts Airway Morphogenesis. Journal of Immunology, 2011, 187, 2740-2747.	0.8	107

#	Article	IF	CITATIONS
73	<i>Pten</i> in the Breast Tumor Microenvironment: Modeling Tumor–Stroma Coevolution. Cancer Research, 2011, 71, 1203-1207.	0.9	39
74	E2f1–3 Are Critical for Myeloid Development. Journal of Biological Chemistry, 2011, 286, 4783-4795.	3.4	30
75	Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: a mathematical model and experiments. Journal of Mathematical Biology, 2010, 61, 401-421.	1.9	41
76	A new role for OPG: Putting RANKL in its place. Journal of Bone and Mineral Research, 2010, 25, 1905-1906.	2.8	3
77	TNF Inhibits Notch-1 in Skeletal Muscle Cells by Ezh2 and DNA Methylation Mediated Repression: Implications in Duchenne Muscular Dystrophy. PLoS ONE, 2010, 5, e12479.	2.5	104
78	Allele-specific tumor spectrum in <i>Pten</i> knockin mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5142-5147.	7.1	59
79	An <i>Ets2</i> -Driven Transcriptional Program in Tumor-Associated Macrophages Promotes Tumor Metastasis. Cancer Research, 2010, 70, 1323-1333.	0.9	108
80	Analysis of spatial variation of nuclear morphology in tissue microenvironments. , 2010, , .		1
81	MicroRNA-451 Regulates LKB1/AMPK Signaling and Allows Adaptation to Metabolic Stress in Glioma Cells. Molecular Cell, 2010, 37, 620-632.	9.7	382
82	ETS Transcription Factors in the Tumor Microenvironment. The Open Cancer Journal, 2010, 3, 49-54.	0.2	2
83	The PtdIns 3-Kinase/Akt Pathway Regulates Macrophage-Mediated ADCC against B Cell Lymphoma. PLoS ONE, 2009, 4, e4208.	2.5	14
84	Erk1 and Erk2 Regulate Endothelial Cell Proliferation and Migration during Mouse Embryonic Angiogenesis. PLoS ONE, 2009, 4, e8283.	2.5	141
85	Ambient Air Pollution Exaggerates Adipose Inflammation and Insulin Resistance in a Mouse Model of Diet-Induced Obesity. Circulation, 2009, 119, 538-546.	1.6	608
86	Genomic Alterations in Tumor Stroma. Cancer Research, 2009, 69, 6759-6764.	0.9	51
87	Free Cholesterol Accumulation in Macrophage Membranes Activates Toll-Like Receptors and p38 Mitogen-Activated Protein Kinase and Induces Cathepsin K. Circulation Research, 2009, 104, 455-465.	4.5	157
88	Clonal Mutations in the Cancer-Associated Fibroblasts: The Case against Genetic Coevolution. Cancer Research, 2009, 69, 6765-6769.	0.9	70
89	Defective coâ€activator recruitment in osteoclasts from <i>microphthalmiaâ€oak ridge</i> mutant mice. Journal of Cellular Physiology, 2009, 220, 230-237.	4.1	9
90	Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature, 2009, 461, 1084-1091.	27.8	475

#	Article	IF	CITATIONS
91	Tensor classification of N-point correlation function features for histology tissue segmentation. Medical Image Analysis, 2009, 13, 156-166.	11.6	24
92	A mouse model of yellow fluorescent protein (YFP) expression in hematopoietic cells to assess leukocyte–endothelial interactions in the microcirculation. Microvascular Research, 2009, 78, 294-300.	2.5	4
93	Eos Mediates Foxp3-Dependent Gene Silencing in CD4 ⁺ Regulatory T Cells. Science, 2009, 325, 1142-1146.	12.6	295
94	Ets1 and Ets2 are required for endothelial cell survival during embryonic angiogenesis. Blood, 2009, 114, 1123-1130.	1.4	147
95	Analysis of the IKKβ/NFâ€P̂B signaling pathway during embryonic angiogenesis. Developmental Dynamics, 2008, 237, 2926-2935.	1.8	18
96	PU.1 and NFATc1 mediate osteoclastic induction of the mouse \hat{l}^2 ₃ integrin promoter. Journal of Cellular Physiology, 2008, 215, 636-644.	4.1	69
97	Trisomy represses ApcMin -mediated tumours in mouse models of Down's syndrome. Nature, 2008, 451, 73-75.	27.8	143
98	e-Science, caGrid, and Translational Biomedical Research. Computer, 2008, 41, 58-66.	1.1	15
99	The Ewing Sarcoma Protein (EWS) Binds Directly to the Proximal Elements of the Macrophage-Specific Promoter of the CSF-1 Receptor (csf1r) Gene. Journal of Immunology, 2008, 180, 6733-6742.	0.8	23
100	Breast Cancer–Associated Fibroblasts Confer AKT1-Mediated Epigenetic Silencing of <i>Cystatin M</i> in Epithelial Cells. Cancer Research, 2008, 68, 10257-10266.	0.9	65
101	Direct Evidence for Epithelial-Mesenchymal Transitions in Breast Cancer. Cancer Research, 2008, 68, 937-945.	0.9	329
102	NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. Journal of Clinical Investigation, 2008, 118, 3775-3789.	8.2	304
103	ErbB-2 Induces the Cyclin D1 Gene in Prostate Epithelial Cells In vitro and In vivo. Cancer Research, 2007, 67, 4364-4372.	0.9	36
104	MITF and PU.1 Recruit p38 MAPK and NFATc1 to Target Genes during Osteoclast Differentiation. Journal of Biological Chemistry, 2007, 282, 15921-15929.	3.4	155
105	The Expression of Clcn7 and Ostm1 in Osteoclasts Is Coregulated by Microphthalmia Transcription Factor. Journal of Biological Chemistry, 2007, 282, 1891-1904.	3.4	73
106	CpG Island Methylation in a Mouse Model of Lymphoma Is Driven by the Genetic Configuration of Tumor Cells. PLoS Genetics, 2007, 3, e167.	3.5	37
107	Eos, MITF, and PU.1 Recruit Corepressors to Osteoclast-Specific Genes in Committed Myeloid Progenitors. Molecular and Cellular Biology, 2007, 27, 4018-4027.	2.3	78
108	A critical role for Akt in macrophage cytotoxicity to antibodyâ€coated tumor cells. FASEB Journal, 2007, 21, A184.	0.5	1

#	Article	IF	Citations
109	Cytokines in the Tumor Stroma. , 2007, , 233-244.		O
110	Lipopolysaccharide-induced production of interleukin-10 is promoted by the serine/threonine kinase Akt. Molecular Immunology, 2006, 43, 1557-1564.	2.2	109
111	The ERK1/2 pathway modulates nuclear PTEN-mediated cell cycle arrest by cyclin D1 transcriptional regulation. Human Molecular Genetics, 2006, 15, 2553-2559.	2.9	106
112	Microphthalmia-associated Transcription Factor Interactions with 14-3-3 Modulate Differentiation of Committed Myeloid Precursors. Molecular Biology of the Cell, 2006, 17, 3897-3906.	2.1	66
113	Tyrosine Kinase Etk/BMX Is Up-regulated in Human Prostate Cancer and Its Overexpression Induces Prostate Intraepithelial Neoplasia in Mouse. Cancer Research, 2006, 66, 8058-8064.	0.9	52
114	Genetics and Genomics of Osteoclast Differentiation: Integrating Cell Signaling Pathways and Gene Networks. Critical Reviews in Eukaryotic Gene Expression, 2006, 16, 253-278.	0.9	9
115	A subpopulation of peritoneal macrophages form capillary-like lumens and branching patterns in vitro. Journal of Cellular and Molecular Medicine, 2006, 10, 708-715.	3.6	1
116	ERK phosphorylation is linked to VEGFR2 expression and Ets-2 phosphorylation in breast cancer and is associated with tamoxifen treatment resistance and small tumours with good prognosis. Oncogene, 2005, 24, 4370-4379.	5.9	106
117	Akt Activation Regulates Macrophage Survival and Differentiation: Role of M-CSF and Endogenous ROS Blood, 2005, 106, 2208-2208.	1.4	0
118	The Inositol 3-Phosphatase PTEN Negatively Regulates Fcγ Receptor Signaling, but Supports Toll-Like Receptor 4 Signaling in Murine Peritoneal Macrophages. Journal of Immunology, 2004, 172, 4851-4857.	0.8	85
119	The Serine/Threonine Kinase Akt Promotes Fcl³ Receptor-mediated Phagocytosis in Murine Macrophages through the Activation of p70S6 Kinase. Journal of Biological Chemistry, 2004, 279, 54416-54425.	3.4	64
120	Activated Ets2 Is Required for Persistent Inflammatory Responses in the Motheaten Viable Model. Journal of Immunology, 2004, 173, 1374-1379.	0.8	43
121	RANKL Coordinates Cell Cycle Withdrawal and Differentiation in Osteoclasts Through the Cyclin-Dependent Kinase Inhibitors p27KIP1and p21CIP1. Journal of Bone and Mineral Research, 2004, 19, 1339-1348.	2.8	49
122	Regulation of the Murine TRACP Gene Promoter. Journal of Bone and Mineral Research, 2003, 18, 1901-1904.	2.8	15
123	Extra-embryonic function of Rb is essential for embryonic development and viability. Nature, 2003, 421, 942-947.	27.8	371
124	PTEN blocks insulin-mediated ETS-2 phosphorylation through MAP kinase, independently of the phosphoinositide 3-kinase pathway. Human Molecular Genetics, 2003, 12, 1943-1943.	2.9	1
125	CD13/APN Transcription Is Induced by RAS/MAPK-mediated Phosphorylation of Ets-2 in Activated Endothelial Cells. Journal of Biological Chemistry, 2003, 278, 49358-49368.	3.4	55
126	Ets-2 and Components of Mammalian SWI/SNF Form a Repressor Complex That Negatively Regulates the BRCA1Promoter. Journal of Biological Chemistry, 2003, 278, 17876-17884.	3.4	73

#	Article	IF	CITATIONS
127	Microphthalmia Transcription Factor and PU.1 Synergistically Induce the Leukocyte Receptor Osteoclast-associated Receptor Gene Expression. Journal of Biological Chemistry, 2003, 278, 24209-24216.	3.4	86
128	A Central Role for Ets-2 in the Transcriptional Regulation and Cyclic Adenosine 5′-Monophosphate Responsiveness of the Human Chorionic Gonadotropin-β Subunit Gene. Molecular Endocrinology, 2003, 17, 11-26.	3.7	32
129	A macrophage colony-stimulating factor receptor–green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood, 2003, 101, 1155-1163.	1.4	605
130	Ets-2 interacts with co-repressor BS69 to repress target gene expression. Anticancer Research, 2003, 23, 2173-8.	1.1	23
131	Microphthalmia Transcription Factor Is a Target of the p38 MAPK Pathway in Response to Receptor Activator of NF-ÎB Ligand Signaling. Journal of Biological Chemistry, 2002, 277, 11077-11083.	3.4	218
132	PTEN blocks insulin-mediated ETS-2 phosphorylation through MAP kinase, independently of the phosphoinositide 3-kinase pathway. Human Molecular Genetics, 2002, 11, 1687-1696.	2.9	70
133	The microphthalmia transcription factor (MITF) contains two N-terminal domains required for transactivation of osteoclast target promoters and rescue of mi mutant osteoclasts. Journal of Leukocyte Biology, 2002, 71, 295-303.	3.3	19
134	The microphthalmia transcription factor and the related helix-loop-helix zipper factors TFE-3 and TFE-C collaborate to activate the tartrate-resistant acid phosphatase promoter. Journal of Leukocyte Biology, 2002, 71, 304-10.	3.3	32
135	Genetic and Physical Interactions betweenMicrophthalmia Transcription Factor and PU.1 Are Necessary for Osteoclast Gene Expression and Differentiation. Journal of Biological Chemistry, 2001, 276, 36703-36710.	3.4	105
136	Transgenic Mice Overexpressing Tartrate-Resistant Acid Phosphatase Exhibit an Increased Rate of Bone Turnover. Journal of Bone and Mineral Research, 2000, 15, 103-110.	2.8	142
137	ets-2 Is a Target for an Akt (Protein Kinase B)/Jun N-Terminal Kinase Signaling Pathway in Macrophages of motheaten-viable Mutant Mice. Molecular and Cellular Biology, 2000, 20, 8026-8034.	2.3	67
138	The Microphthalmia Transcription Factor Regulates Expression of the Tartrate-Resistant Acid Phosphatase Gene During Terminal Differentiation of Osteoclasts. Journal of Bone and Mineral Research, 2000, 15, 451-460.	2.8	117
139	Differentiation of the Mononuclear Phagocyte System During Mouse Embryogenesis: The Role of Transcription Factor PU.1. Blood, 1999, 94, 127-138.	1.4	156
140	Macrophage Colony-stimulating Factor Promotes Cell Survival through Akt/Protein Kinase B. Journal of Biological Chemistry, 1999, 274, 26393-26398.	3.4	156
141	Cloning and Characterization of the Murine Genes for bHLH-ZIP Transcription Factors TFEC and TFEB Reveal a Common Gene Organization for All MiT Subfamily Members. Genomics, 1999, 56, 111-120.	2.9	90
142	Interaction between PU.1 and Another Ets Family Transcription Factor Promotes Macrophage-specific Basal Transcription Initiation. Journal of Biological Chemistry, 1998, 273, 6662-6669.	3.4	70
143	Control of interferon-Â gene expression by Ets-2. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7882-7887.	7.1	86
144	Persistent Activation of Mitogen-Activated Protein Kinases p42 and p44 and ets-2 Phosphorylation in Response to Colony-Stimulating Factor 1/c-fms Signaling. Molecular and Cellular Biology, 1998, 18, 5148-5156.	2.3	98

#	Article	IF	CITATIONS
145	Rapid Phosphorylation of Ets-2 Accompanies Mitogen-Activated Protein Kinase Activation and the Induction of Heparin-Binding Epidermal Growth Factor Gene Expression by Oncogenic Raf-1. Molecular and Cellular Biology, 1997, 17, 2401-2412.	2.3	161
146	Regulation of CSF-1 receptor expression. Molecular Reproduction and Development, 1997, 46, 46-53.	2.0	31
147	Transcriptional Control of the Expression of the c-fms Gene Encoding the Receptor for Macrophage Colony-Stimulating Factor (CSF-1). Immunobiology, 1996, 195, 461-476.	1.9	4
148	GHF-1/Pit-1 Functions as a Cell-specific Integrator of Ras Signaling by Targeting the Ras Pathway to a Composite Ets-1/GHF-1 Response Element. Journal of Biological Chemistry, 1996, 271, 24639-24648.	3 . 4	56
149	The transactivation potential of a c-Myc N-terminal region (residues 92-143) is regulated by growth factor/Ras signaling. Nucleic Acids Research, 1996, 24, 1971-1978.	14.5	9
150	Stimulation of the P-450 side chain cleavage enzyme (CYP11A1) promoter through ras- and Ets-2-signaling pathways. Molecular Endocrinology, 1996, 10, 1084-1094.	3.7	23
151	Cyclic AMP-dependent Activation of Rap1b. Journal of Biological Chemistry, 1995, 270, 10373-10376.	3.4	122
152	Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes Journal of Experimental Medicine, 1994, 180, 2309-2319.	8.5	113
153	An enhancer element responsive to ras and fms signaling pathways is composed of two distinct nuclear factor binding sites. Molecular Endocrinology, 1992, 6, 1051-1060.	3.7	16
154	Analysis of the v-myb structural components important for transactivation of gene expression. Nucleic Acids Research, 1991, 19, 1533-1539.	14.5	15
155	The carboxy-terminal catalytic domain of the GTPase-activating protein inhibits nuclear signal transduction and morphological transformation mediated by the CSF-1 receptor Genes and Development, 1991, 5, 1777-1785.	5.9	37
156	Transcriptional activation of a conserved sequence element by ras requires a nuclear factor distinct from c-fos or c-jun Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 3866-3870.	7.1	42
157	Negative Regulation of Transcription in Vitro by a Glucocorticoid Response Element Is Mediated by a <i>trans</i> -Acting Factor. Molecular and Cellular Biology, 1988, 8, 3872-3881.	2.3	42
158	Isolation and characterization of minichromosome particles that contain a glucocorticoid-modulated promoter. Nucleic Acids Research, 1987, 15, 6957-6971.	14.5	7
159	Interfaces for Data Transfer Between Solid Modeling Systems. IEEE Computer Graphics and Applications, 1985, 5, 41-51.	1.2	21
160	Covalent and noncovalent receptor-glucocorticoid complexes preferentially bind to the same regions of the long terminal repeat of murine mammary tumor virus proviral DNA. Biochemistry, 1984, 23, 6883-6889.	2.5	42
161	The Mouse Mammary Tumor Virus Model in Studies of Glucocorticoid Regulation. , 1984, 40, 121-142.		15
162	Effect of castration on the synthesis of seminal vesicle secretory protein IV in the rat. Biochemistry, 1982, 21, 3525-3529.	2.5	43

#	Article	IF	CITATIONS
163	Glucocorticoid regulation of the Ha-MuSV p21 gene conferred by sequences from mouse mammary tumor virus. Cell, 1981, 27, 245-255.	28.9	357
164	Developmental regulation of secretory protein synthesis in rat seminal vesicle Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 737-741.	7.1	37
165	Specific transcriptional initiation in vitro on murine type C retrovirus promoters Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 4485-4489.	7.1	33
166	Properties of a flavoprotein sulfhydryl oxidase from rat seminal vesicle secretion. Biochemistry, 1980, 19, 2639-2645.	2.5	95
167	A flavoprotein responsible for the intense sulfhydryl oxidase activity of rat seminal vesicle secretion. Biochemical and Biophysical Research Communications, 1979, 87, 171-176.	2.1	49