
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/859295/publications.pdf Version: 2024-02-01

LUDC KELLED

#	Article	IF	CITATIONS
1	Microbial Fuel Cells: Methodology and Technologyâ€. Environmental Science & Technology, 2006, 40, 5181-5192.	10.0	4,962
2	Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology, 2008, 26, 450-459.	9.3	1,039
3	Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 2013, 500, 567-570.	27.8	1,029
4	Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Research, 2007, 41, 2271-2300.	11.3	998
5	Identification of Polyphosphate-Accumulating Organisms and Design of 16S rRNA-Directed Probes for Their Detection and Quantitation. Applied and Environmental Microbiology, 2000, 66, 1175-1182.	3.1	691
6	Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 2019, 4, 1183-1195.	13.3	491
7	Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME Journal, 2007, 1, 9-18.	9.8	433
8	Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research, 2008, 42, 3013-3024.	11.3	412
9	Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnology and Bioengineering, 2003, 84, 170-178.	3.3	391
10	Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes b bThe GenBank accession numbers for the sequences reported in this paper are given in Methods Microbiology (United Kingdom), 2002, 148, 3353-3364.	1.8	377
11	Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochemistry Communications, 2009, 11, 1752-1755.	4.7	371
12	Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Research, 1996, 30, 277-284.	11.3	364
13	Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresource Technology, 2006, 97, 459-468.	9.6	358
14	The anode potential regulates bacterial activity in microbial fuel cells. Applied Microbiology and Biotechnology, 2008, 78, 409-418.	3.6	350
15	Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Research, 2010, 44, 2970-2980.	11.3	341
16	Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation, 2008, 19, 303-312.	3.0	336
17	Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Research, 2007, 41, 3033-3042.	11.3	331
18	Decolorization of Azo Dyes in Bioelectrochemical Systems. Environmental Science & Technology, 2009, 43, 5137-5143.	10.0	299

#	Article	IF	CITATIONS
19	Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Research, 2012, 46, 863-872.	11.3	297
20	Effects of Surface Charge and Hydrophobicity on Anodic Biofilm Formation, Community Composition, and Current Generation in Bioelectrochemical Systems. Environmental Science & Technology, 2013, 47, 7563-7570.	10.0	294
21	Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water Research, 2010, 44, 625-637.	11.3	280
22	Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME Journal, 2008, 2, 519-527.	9.8	268
23	Methane formation in sewer systems. Water Research, 2008, 42, 1421-1430.	11.3	254
24	Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems. Biotechnology and Bioengineering, 2003, 81, 92-105.	3.3	251
25	Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochimica Acta, 2007, 53, 598-603.	5.2	250
26	Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. Journal of Chromatography A, 2005, 1070, 131-136.	3.7	244
27	High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide. Environmental Science & Technology, 2015, 49, 13566-13574.	10.0	241
28	Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. Journal of Hazardous Materials, 2015, 283, 551-557.	12.4	241
29	Removal of Persistent Organic Contaminants by Electrochemically Activated Sulfate. Environmental Science & Technology, 2015, 49, 14326-14333.	10.0	240
30	A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. Journal of Materials Chemistry A, 2014, 2, 13093-13102.	10.3	236
31	Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnology and Bioengineering, 2005, 91, 162-168.	3.3	233
32	Electron and Carbon Balances in Microbial Fuel Cells Reveal Temporary Bacterial Storage Behavior During Electricity Generation. Environmental Science & Technology, 2007, 41, 2915-2921.	10.0	231
33	Simultaneous nitrification, denitrification, and phosphorus removal from nutrientâ€rich industrial wastewater using granular sludge. Biotechnology and Bioengineering, 2008, 100, 529-541.	3.3	215
34	Nitrogen Removal from Wastewater by Coupling Anammox and Methane-Dependent Denitrification in a Membrane Biofilm Reactor. Environmental Science & Technology, 2013, 47, 11577-11583.	10.0	214
35	Use of Stable-Isotope Probing, Full-Cycle rRNA Analysis, and Fluorescence In Situ Hybridization-Microautoradiography To Study a Methanol-Fed Denitrifying Microbial Community. Applied and Environmental Microbiology, 2004, 70, 588-596.	3.1	213
36	Biofiltration of wastewater treatment plant effluent: Effective removal of pharmaceuticals and personal care products and reduction of toxicity. Water Research, 2011, 45, 2751-2762.	11.3	210

#	Article	lF	CITATIONS
37	Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. Water Research, 2006, 40, 3838-3848.	11.3	207
38	Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture. Water Research, 2007, 41, 826-834.	11.3	198
39	Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environmental Microbiology Reports, 2009, 1, 377-384.	2.4	196
40	Study of factors affecting simultaneous nitrification and denitrification (SND). Water Science and Technology, 1999, 39, 61.	2.5	194
41	Reducing sewer corrosion through integrated urban water management. Science, 2014, 345, 812-814.	12.6	194
42	Nitrobenzene Removal in Bioelectrochemical Systems. Environmental Science & Technology, 2009, 43, 8690-8695.	10.0	191
43	Microbial fuel cells operating on mixed fatty acids. Bioresource Technology, 2010, 101, 1233-1238.	9.6	188
44	Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Research, 2005, 39, 171-183.	11.3	187
45	Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enrichedNitrosomonas culture. Biotechnology and Bioengineering, 2006, 95, 830-839.	3.3	186
46	Syntrophic Processes Drive the Conversion of Glucose in Microbial Fuel Cell Anodes. Environmental Science & Technology, 2008, 42, 7937-7943.	10.0	186
47	The Inhibitory Effects of Free Nitrous Acid on the Energy Generation and Growth Processes of an EnrichedNitrobacterCulture. Environmental Science & Technology, 2006, 40, 4442-4448.	10.0	185
48	Sequential anode–cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Research, 2008, 42, 1387-1396.	11.3	181
49	Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiology, 2010, 10, 98.	3.3	180
50	Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems. Biotechnology and Bioengineering, 2005, 91, 43-53.	3.3	179
51	Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. Water Research, 2008, 42, 2166-2176.	11.3	179
52	High Current Generation Coupled to Caustic Production Using a Lamellar Bioelectrochemical System. Environmental Science & Technology, 2010, 44, 4315-4321.	10.0	179
53	Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. Journal of Biotechnology, 2006, 123, 22-32.	3.8	174
54	Microbial Electrosynthesis of Isobutyric, Butyric, Caproic Acids, and Corresponding Alcohols from Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 8485-8493.	6.7	174

#	Article	lF	CITATIONS
55	The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms. Water Research, 2005, 39, 3727-3737.	11.3	167
56	Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms. Biotechnology and Bioengineering, 2003, 83, 140-148.	3.3	162
57	Investigation of an Acetate-Fed Denitrifying Microbial Community by Stable Isotope Probing, Full-Cycle rRNA Analysis, and Fluorescent In Situ Hybridization-Microautoradiography. Applied and Environmental Microbiology, 2005, 71, 8683-8691.	3.1	160
58	Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. Bioresource Technology, 2011, 102, 334-341.	9.6	160
59	Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system. Biotechnology and Bioengineering, 2003, 81, 397-404.	3.3	159
60	Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor. Water Research, 2016, 100, 486-495.	11.3	159
61	Optimization of integrated chemical–biological degradation of a reactive azo dye using response surface methodology. Journal of Hazardous Materials, 2006, 138, 160-168.	12.4	158
62	Source-separated urine opens golden opportunities for microbial electrochemical technologies. Trends in Biotechnology, 2015, 33, 214-220.	9.3	156
63	Study of factors affecting simultaneous nitrification and denitrification (SND). Water Science and Technology, 1999, 39, 61-68.	2.5	155
64	The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass. Water Research, 2004, 38, 1390-1404.	11.3	155
65	Sulfur transformation in rising main sewers receiving nitrate dosage. Water Research, 2009, 43, 4430-4440.	11.3	155
66	Microbiology of a Nitrite-Oxidizing Bioreactor. Applied and Environmental Microbiology, 1998, 64, 1878-1883.	3.1	154
67	Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. Water Research, 2009, 43, 4123-4132.	11.3	153
68	Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges. Water Research, 2009, 43, 4469-4478.	11.3	151
69	Determining the fraction of pharmaceutical residues in wastewater originating from a hospital. Water Research, 2010, 44, 605-615.	11.3	148
70	Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading. Water Research, 2006, 40, 2765-2775.	11.3	147
71	Surface neutralization and H2S oxidation at early stages of sewer corrosion: Influence of temperature, relative humidity and H2S concentration. Water Research, 2012, 46, 4235-4245.	11.3	141
72	Bringing High-Rate, CO ₂ -Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions. Environmental Science & Technology, 2016, 50, 1982-1989.	10.0	141

#	Article	IF	CITATIONS
73	Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes. Water Research, 2011, 45, 1579-1586.	11.3	140
74	Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. Journal of Biotechnology, 2006, 122, 62-72.	3.8	139
75	Dynamics and dynamic modelling of H2S production in sewer systems. Water Research, 2008, 42, 2527-2538.	11.3	139
76	Phototrophic bacteria for nutrient recovery from domestic wastewater. Water Research, 2014, 50, 18-26.	11.3	139
77	Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system. Water Research, 2008, 42, 4549-4561.	11.3	135
78	Variation of bulk properties of anaerobic granules with wastewater type. Water Research, 2001, 35, 1723-1729.	11.3	133
79	The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. Energy and Environmental Science, 2013, 6, 1291.	30.8	132
80	Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated byÂnovel PAO clade Comamonadaceae. Water Research, 2015, 69, 173-182.	11.3	132
81	Electron Fluxes in a Microbial Fuel Cell Performing Carbon and Nitrogen Removal. Environmental Science & Technology, 2009, 43, 5144-5149.	10.0	126
82	Determining the long-term effects of H2S concentration, relative humidity and air temperature on concrete sewer corrosion. Water Research, 2014, 65, 157-169.	11.3	122
83	Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide. ChemElectroChem, 2016, 3, 581-591.	3.4	122
84	Spontaneous electrochemical removal of aqueous sulfide. Water Research, 2008, 42, 4965-4975.	11.3	120
85	Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation. Water Research, 2015, 87, 49-58.	11.3	116
86	Consumption-based approach for assessing the contribution of hospitals towards the load of pharmaceutical residues in municipal wastewater. Environment International, 2012, 45, 99-111.	10.0	111
87	Monitoring the biological activity of micropollutants during advanced wastewater treatment with ozonation and activated carbon filtration. Water Research, 2010, 44, 477-492.	11.3	109
88	Anaerobic and aerobic metabolism of glycogen-accumulating organisms selected with propionate as the sole carbon source. Microbiology (United Kingdom), 2006, 152, 2767-2778.	1.8	108
89	Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion. Water Research, 2013, 47, 6546-6557.	11.3	108
90	Development of a model for assessing methane formation in rising main sewers. Water Research, 2009, 43, 2874-2884.	11.3	107

#	Article	IF	CITATIONS
91	Impact of nitrate addition on biofilm properties and activities in rising main sewers. Water Research, 2009, 43, 4225-4237.	11.3	106
92	Predicting concrete corrosion of sewers using artificial neural network. Water Research, 2016, 92, 52-60.	11.3	106
93	Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Environmental Microbiology Reports, 2011, 3, 315-319.	2.4	103
94	Understanding the properties of aerobic sludge granules as hydrogels. Biotechnology and Bioengineering, 2009, 102, 1483-1493.	3.3	102
95	Reverse osmosis integrity monitoring in water reuse: The challenge to verify virus removal – A review. Water Research, 2016, 98, 384-395.	11.3	98
96	Characterisation and removal of recalcitrants in reverse osmosis concentrates from water reclamation plants. Water Research, 2011, 45, 2415-2427.	11.3	96
97	Recovering Nitrogen as a Solid without Chemical Dosing: Bio-Electroconcentration for Recovery of Nutrients from Urine. Environmental Science and Technology Letters, 2017, 4, 119-124.	8.7	96
98	Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes. Water Research, 2011, 45, 5381-5388.	11.3	93
99	Impact of Iron Salt Dosage to Sewers on Downstream Anaerobic Sludge Digesters: Sulfide Control and Methane Production. Journal of Environmental Engineering, ASCE, 2013, 139, 594-601.	1.4	93
100	Removal of sulfate from high-strength wastewater by crystallisation. Water Research, 2009, 43, 762-772.	11.3	92
101	The role of iron in sulfide induced corrosion ofÂsewer concrete. Water Research, 2014, 49, 166-174.	11.3	92
102	Detection of anthropogenic gadolinium in treated wastewater in South East Queensland, Australia. Water Research, 2009, 43, 3534-3540.	11.3	86
103	Carbon and Electron Fluxes during the Electricity Driven 1,3-Propanediol Biosynthesis from Glycerol. Environmental Science & Technology, 2013, 47, 11199-11205.	10.0	86
104	Wastewater-Enhanced Microbial Corrosion of Concrete Sewers. Environmental Science & Technology, 2016, 50, 8084-8092.	10.0	85
105	Development of a novel titration and off-gas analysis (TOGA) sensor for study of biological processes in wastewater treatment systems. Biotechnology and Bioengineering, 2003, 81, 482-495.	3.3	84
106	Odor emissions from domestic wastewater: A review. Critical Reviews in Environmental Science and Technology, 2017, 47, 1581-1611.	12.8	83
107	Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions. Water Research, 2007, 41, 4646-4656.	11.3	81
108	Electrochemical sulfide removal and recovery from paper mill anaerobic treatment effluent. Water Research, 2010, 44, 2563-2571.	11.3	80

#	Article	IF	CITATIONS
109	Production of targeted poly(3-hydroxyalkanoates) copolymers by glycogen accumulating organisms using acetate as sole carbon source. Journal of Biotechnology, 2007, 129, 489-497.	3.8	79
110	Reductive electrochemical remediation of emerging and regulated disinfection byproducts. Water Research, 2012, 46, 1705-1714.	11.3	78
111	Identification of controlling factors for the initiation of corrosion of fresh concrete sewers. Water Research, 2015, 80, 30-40.	11.3	78
112	Feasibility of sulfide control in sewers by reuse ofÂiron rich drinking water treatment sludge. Water Research, 2015, 71, 150-159.	11.3	77
113	Fate of N-nitrosodimethylamine, trihalomethane and haloacetic acid precursors in tertiary treatment including biofiltration. Water Research, 2011, 45, 5695-5704.	11.3	76
114	Anaerobic metabolism of Defluviicoccus vanus related glycogen accumulating organisms (GAOs) with acetate and propionate as carbon sources. Water Research, 2007, 41, 1885-1896.	11.3	75
115	Electrochemical Abatement of Hydrogen Sulfide from Waste Streams. Critical Reviews in Environmental Science and Technology, 2015, 45, 1555-1578.	12.8	75
116	Effect of pH on the ageing of reverse osmosis membranes upon exposure to hypochlorite. Desalination, 2013, 309, 97-105.	8.2	73
117	Characterisation of polyhydroxyalkanoate copolymers with controllable four-monomer composition. Journal of Biotechnology, 2008, 134, 137-145.	3.8	72
118	Optimization of intermittent, simultaneous dosage of nitrite and hydrochloric acid to control sulfide and methane productions in sewers. Water Research, 2011, 45, 6163-6172.	11.3	72
119	Determination of Growth Rate and Yield of Nitrifying Bacteria by Measuring Carbon Dioxide Uptake Rate. Water Environment Research, 2007, 79, 2437-2445.	2.7	71
120	A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (DAMO) and anammox processes in anoxic environments. Scientific Reports, 2015, 5, 8706.	3.3	71
121	Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source. Bioelectrochemistry, 2015, 102, 56-63.	4.6	71
122	Role of Sulfur during Acetate Oxidation in Biological Anodes. Environmental Science & Technology, 2009, 43, 3839-3845.	10.0	69
123	Proposed modifications to metabolic model for glycogen-accumulating organisms under anaerobic conditions. Biotechnology and Bioengineering, 2002, 80, 277-279.	3.3	67
124	Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities. Water Research, 2011, 45, 2281-2289.	11.3	66
125	Modern scientific methods and their potential in wastewater science and technology. Water Research, 2002, 36, 370-393.	11.3	64
126	Understanding the operational parameters affecting NDMA formation at Advanced Water Treatment Plants. Journal of Hazardous Materials, 2011, 185, 1575-1581.	12.4	64

#	Article	IF	CITATIONS
127	High-Throughput Amplicon Sequencing Reveals Distinct Communities within a Corroding Concrete Sewer System. Applied and Environmental Microbiology, 2012, 78, 7160-7162.	3.1	64
128	Stoichiometric and kinetic characterisation ofNitrobacter in mixed culture by decoupling the growth and energy generation processes. Biotechnology and Bioengineering, 2006, 94, 1176-1188.	3.3	62
129	A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage. Water Research, 2017, 126, 411-420.	11.3	60
130	Microbial electrosynthesis system with dual biocathode arrangement for simultaneous acetogenesis, solventogenesis and carbon chain elongation. Chemical Communications, 2019, 55, 4351-4354.	4.1	60
131	Modeling aerobic carbon oxidation and storage by integrating respirometric, titrimetric, and off-gas CO2 measurements. Biotechnology and Bioengineering, 2004, 88, 135-147.	3.3	59
132	Electrochemical regeneration of sulfur loaded electrodes. Electrochemistry Communications, 2009, 11, 1437-1440.	4.7	58
133	Assessment of the impact of chloride on the formation of chlorinated by-products in the presence and absence of electrochemically activated sulfate. Chemical Engineering Journal, 2017, 330, 1265-1271.	12.7	58
134	Kinetics and mechanisms of nitrate and ammonium formation during ozonation of dissolved organic nitrogen. Water Research, 2017, 108, 451-461.	11.3	58
135	Bioelectrochemical systems: Microbial versus enzymatic catalysis. Electrochimica Acta, 2012, 82, 165-174.	5.2	57
136	Nutrient removal and energy recovery from high-rate activated sludge processes – Impact of sludge age. Bioresource Technology, 2017, 245, 1155-1161.	9.6	56
137	A comprehensive laboratory assessment of the effects of sewer-dosed iron salts on wastewater treatment processes. Water Research, 2018, 146, 109-117.	11.3	56
138	Effectiveness of an alternating aerobic, anoxic/anaerobic strategy for maintaining biomass activity of BNR sludge during long-term starvation. Water Research, 2007, 41, 2590-2598.	11.3	54
139	Model-based analysis of anaerobic acetate uptake by a mixed culture of polyphosphate-accumulating and glycogen-accumulating organisms. Biotechnology and Bioengineering, 2003, 83, 293-302.	3.3	53
140	A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid. Water Research, 2015, 70, 279-287.	11.3	51
141	Biodegradability of DBP precursors after drinking water ozonation. Water Research, 2016, 106, 550-561.	11.3	51
142	Mathematical modelling of prefermenters—I. Model development and verification. Water Research, 1999, 33, 2757-2768.	11.3	50
143	Oxidised stainless steel: a very effective electrode material for microbial fuel cell bioanodes but at high risk of corrosion. Electrochimica Acta, 2015, 158, 356-360.	5.2	47
144	Evaluation of data-driven models for predicting the service life of concrete sewer pipes subjected to corrosion. Journal of Environmental Management, 2019, 234, 431-439.	7.8	47

#	Article	IF	CITATIONS
145	Removal of the X-ray Contrast Media Diatrizoate by Electrochemical Reduction and Oxidation. Environmental Science & Technology, 2013, 47, 13686-13694.	10.0	45
146	Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control. Biotechnology and Bioengineering, 1999, 63, 507-515.	3.3	44
147	Dehalogenation of Iodinated X-ray Contrast Media in a Bioelectrochemical System. Environmental Science & Technology, 2011, 45, 782-788.	10.0	43
148	Impact of oxygen mass transfer on nitrification reactions in suspended carrier reactor biofilms. Process Biochemistry, 2009, 44, 43-53.	3.7	40
149	Effects of in-sewer dosing of iron-rich drinking water sludge on wastewater collection and treatment systems. Water Research, 2020, 171, 115396.	11.3	40
150	Microscale structure and function of anaerobic–aerobic granules containing glycogen accumulating organisms. FEMS Microbiology Ecology, 2003, 45, 253-261.	2.7	39
151	A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater. Biodegradation, 2009, 20, 339-350.	3.0	39
152	A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones. Biodegradation, 2009, 20, 221-234.	3.0	38
153	Stoichiometric and kinetic characterisation of Nitrosomonas sp. in mixed culture by decoupling the growth and energy generation processes. Journal of Biotechnology, 2006, 126, 342-356.	3.8	35
154	Differential distribution of ammonia- and nitrite-oxidising bacteria in flocs and granules from a nitrifying/denitrifying sequencing batch reactor. Enzyme and Microbial Technology, 2006, 39, 1392-1398.	3.2	35
155	Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms. Electrochimica Acta, 2013, 108, 566-574.	5.2	35
156	Enhancing Toxic Metal Removal from Acidified Sludge with Nitrite Addition. Environmental Science & Technology, 2015, 49, 6257-6263.	10.0	35
157	<i>Methanobacterium</i> enables high rate electricity-driven autotrophic sulfate reduction. RSC Advances, 2015, 5, 89368-89374.	3.6	35
158	Recovery of in-sewer dosed iron from digested sludge at downstream treatment plants and its reuse potential. Water Research, 2020, 174, 115627.	11.3	35
159	Development of bioelectrocatalytic activity stimulates mixedâ€culture reduction of glycerol in a bioelectrochemical system. Microbial Biotechnology, 2015, 8, 483-489.	4.2	34
160	Prediction of concrete corrosion in sewers with hybrid Gaussian processes regression model. RSC Advances, 2017, 7, 30894-30903.	3.6	34
161	A rapid, non-destructive methodology to monitor activity of sulfide-induced corrosion of concrete based on H2S uptake rate. Water Research, 2014, 59, 229-238.	11.3	32
162	A decision support system for selecting sanitation systems in developing countries. Socio-Economic Planning Sciences, 2002, 36, 267-290.	5.0	31

#	Article	IF	CITATIONS
163	Variation in Biofilm Structure and Activity Along the Length of a Rising Main Sewer. Water Environment Research, 2009, 81, 800-808.	2.7	30
164	Effects of surface washing on the mitigation of concrete corrosion under sewer conditions. Cement and Concrete Composites, 2016, 68, 88-95.	10.7	30
165	Analysis of biological wastewater treatment processes using multicomponent gas phase mass balancing. Biotechnology and Bioengineering, 2001, 76, 361-375.	3.3	29
166	Sludge population optimisation in biological nutrient removal wastewater treatment systems through on-line process control: a re/view. Reviews in Environmental Science and Biotechnology, 2008, 7, 243-254.	8.1	29
167	Impact of fluctuations in gaseous H 2 S concentrations on sulfide uptake by sewer concrete: The effect of high H 2 S loads. Water Research, 2015, 81, 84-91.	11.3	28
168	Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation. Journal of Hazardous Materials, 2022, 434, 128886.	12.4	28
169	Determination of external and internal mass transfer limitation in nitrifying microbial aggregates. Biotechnology and Bioengineering, 2004, 86, 445-457.	3.3	27
170	Elucidation of metabolic pathways in glycogenâ€accumulating organisms with <i>in vivo</i> ¹³ C nuclear magnetic resonance. Environmental Microbiology, 2007, 9, 2694-2706.	3.8	27
171	Cathodic biofilm activates electrode surface and achieves efficient autotrophic sulfate reduction. Electrochimica Acta, 2016, 213, 66-74.	5.2	27
172	Removal of Pharmaceuticals and Illicit Drugs from Wastewater Due to Ferric Dosing in Sewers. Environmental Science & Technology, 2019, 53, 6245-6254.	10.0	27
173	Modeling the Aerobic Metabolism of Polyphosphateâ€Accumulating Organisms Enriched with Propionate as a Carbon Source. Water Environment Research, 2007, 79, 2477-2486.	2.7	24
174	Removal of magnetic resonance imaging contrast agents through advanced water treatment plants. Water Science and Technology, 2010, 61, 685-692.	2.5	24
175	Long-term field test of an electrochemical method for sulfide removal from sewage. Water Research, 2012, 46, 3085-3093.	11.3	24
176	Comparison of microbial communities across sections of a corroding sewer pipe and the effects of wastewater flooding. Biofouling, 2017, 33, 780-792.	2.2	24
177	Online titrimetric and off-gas analysis for examining nitrification processes in wastewater treatment. Water Research, 2003, 37, 2678-2690.	11.3	23
178	Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells. Bioelectrochemistry, 2017, 118, 62-69.	4.6	22
179	Ferrous Salt Demand for Sulfide Control in Rising Main Sewers: Tests on a Laboratory-Scale Sewer System. Journal of Environmental Engineering, ASCE, 2010, 136, 1180-1187.	1.4	20
180	Microstructure of copolymers of polyhydroxyalkanoates produced by glycogen accumulating organisms with acetate as the sole carbon source. Process Biochemistry, 2008, 43, 968-977.	3.7	19

#	Article	IF	CITATIONS
181	Characterisation of enhanced biological phosphorus removal activated sludges with dissimilar phosphorus removal performances. Water Science and Technology, 1998, 37, 567-571.	2.5	19
182	Engineered ecosystem for sustainable on-site wastewater treatment. Water Research, 2007, 41, 1823-1831.	11.3	18
183	SCORe-CT: a new method for testing effectiveness of sulfide-control chemicals used in sewer systems. Water Science and Technology, 2011, 64, 2381-2388.	2.5	18
184	Oxygen Suppresses Light-Driven Anodic Current Generation by a Mixed Phototrophic Culture. Environmental Science & Technology, 2014, 48, 14000-14006.	10.0	17
185	Opportunities for reducing coagulants usage in urban water management: The Oxley Creek Sewage Collection and Treatment System as an example. Water Research, 2019, 165, 114996.	11.3	17
186	Effective removal of MIB and geosmin using MBBR for drinking water treatment. Water Research, 2019, 149, 440-447.	11.3	16
187	The impact of primary sedimentation on the use of iron-rich drinking water sludge on the urban wastewater system. Journal of Hazardous Materials, 2021, 402, 124051.	12.4	16
188	Integrating process engineering and microbiology tools to advance activated sludge wastewater treatment research and development. Reviews in Environmental Science and Biotechnology, 2002, 1, 83-97.	8.1	15
189	Reducing natural organic matter and disinfection by-product precursors by alternating oxic and anoxic conditions during engineered short residence time riverbank filtration: A laboratory-scale column study. Science of the Total Environment, 2016, 565, 616-625.	8.0	15
190	Enhancing zero valent iron based natural organic matter removal by mixing with dispersed carbon cathodes. Science of the Total Environment, 2016, 550, 95-102.	8.0	15
191	Marine phototrophic consortia transfer electrons to electrodes in response to reductive stress. Photosynthesis Research, 2016, 127, 347-354.	2.9	15
192	Effects of aging of ferric-based drinking water sludge on its reactivity for sulfide and phosphate removal. Water Research, 2020, 184, 116179.	11.3	15
193	Improved understanding of the interactions and complexities of biological nitrogen and phosphorus removal processes. Reviews in Environmental Science and Biotechnology, 2004, 3, 265-272.	8.1	14
194	Oxidative capacitance of sulfate-based boron-doped diamond electrochemical system. Electrochemistry Communications, 2018, 89, 14-18.	4.7	14
195	Dynamic Response of Sulfate-Reducing and Methanogenic Activities of Anaerobic Sewer Biofilms to Ferric Dosing. Journal of Environmental Engineering, ASCE, 2012, 138, 510-517.	1.4	12
196	Fully reversible current driven by a dual marine photosynthetic microbial community. Bioresource Technology, 2015, 195, 248-253.	9.6	12
197	Periodic deprivation of gaseous hydrogen sulfide affects the activity of the concrete corrosion layer in sewers. Water Research, 2019, 157, 463-471.	11.3	12
198	Model development and full scale validation for anaerobic treatment of protein and fat based wastewater. Water Science and Technology, 1997, 36, 423-431.	2.5	12

#	Article	IF	CITATIONS
199	Analysis of Free Ammonia Inhibition of Nitrite Oxidizing Bacteria Using a Dissolved Oxygen Respirometer. Environmental Engineering Research, 2008, 13, 125-130.	2.5	12
200	Using Anoxygenic Photosynthetic Bacteria for the Removal of Sulfide from Wastewater. Advances in Photosynthesis and Respiration, 2008, , 437-460.	1.0	11
201	Enhancing anaerobic digestion using free nitrous acid: Identifying the optimal pre-treatment condition in continuous operation. Water Research, 2021, 205, 117694.	11.3	10
202	Evaluation of continuous and intermittent trickling strategies for the removal of hydrogen sulfide in a biotrickling filter. Chemosphere, 2022, 291, 132723.	8.2	10
203	Performance of a substratum-irradiated photosynthetic biofilm reactor for the removal of sulfide from wastewater. Biotechnology and Bioengineering, 2004, 87, 14-23.	3.3	9
204	Anodic Reactivity of Ferrous Sulfide Precipitates Changing over Time due to Particulate Speciation. Environmental Science & Technology, 2013, 47, 12366-12373.	10.0	9
205	Scaling-Free Electrochemical Production of Caustic and Oxygen for Sulfide Control in Sewers. Environmental Science & Technology, 2015, 49, 11395-11402.	10.0	9
206	Optimization and Control of Nitrogen Removal Activated Sludge Processes: A Review of Recent Developments. Focus on Biotechnology, 2003, , 187-227.	0.4	9
207	Characterisation of the bacterial consortium involved in nitrite oxidation in activated sludge. Water Science and Technology, 1999, 39, 45-52.	2.5	9
208	Selective Extraction of Medium-Chain Carboxylic Acids by Electrodialysis and Phase Separation. ACS Omega, 2021, 6, 7841-7850.	3.5	8
209	Long-term performance of enhanced-zero valent iron for drinking water treatment: A lab-scale study. Chemical Engineering Journal, 2017, 315, 124-131.	12.7	7
210	Electrochemical Quartz Crystal Microbalance to Monitor Biofilm Growth and Properties during BioElectrochemical System Inoculation and Load Conditions. ECS Transactions, 2010, 28, 11-22.	0.5	5
211	Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor. Water Science and Technology, 2016, 73, 1052-1060.	2.5	5
212	Nitrite addition to acidified sludge significantly improves digestibility, toxic metal removal, dewaterability and pathogen reduction. Scientific Reports, 2016, 6, 39795.	3.3	5
213	Greenhouse gas production in wastewater treatment: process selection is the major factor. Water Science and Technology, 2003, 47, 43-8.	2.5	5
214	Evaluating a strategy for maintaining nitrifier activity during long-term starvation in a moving bed biofilm reactor (MBBR) treating reverse osmosis concentrate. Water Science and Technology, 2012, 66, 837-842.	2.5	4
215	Wastewater Treatment (Microbial Bioelectrochemical) and Production of Value-Added By-Products. , 2014, , 2111-2117.		1

Electrochemical Treatment of Reverse Osmosis Concentrates. , 2014, , 644-651.

1

#	Article	IF	CITATIONS
217	METABOLIC MODEL OF THE AEROBIC METABOLISM OF POLYPHOSPHATE ACCUMULATING ORGANISMS WITH A PROPIONATE CARBON SOURCE. Proceedings of the Water Environment Federation, 2007, 2007, 1243-1255.	0.0	0
218	Anodic Reactivity of Ferrous Sulfide Particles Generated in Wastewater Treatment. ECS Meeting Abstracts, 2012, , .	0.0	0
219	CFD MODELLING OF PARTICLE TRANSPORT AND BIOLOGICAL REACTIONS IN A MIXED WASTEWATER TREATMENT VESSEL. , 2002, , .		0