Luca Ridolfi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8592696/publications.pdf

Version: 2024-02-01

272 papers

13,599 citations

25034 57 h-index 28297 105 g-index

277 all docs

277 docs citations

times ranked

277

10661 citing authors

#	Article	IF	Citations
1	Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 2001, 24, 707-723.	3.8	742
2	Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 2014, 52, 603-679.	23.0	642
3	The Effect of Vegetation Density on Canopy Sub-Layer Turbulence. Boundary-Layer Meteorology, 2004, 111, 565-587.	2.3	550
4	Probabilistic modelling of water balance at a point: the role of climate, soil and vegetation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 455, 3789-3805.	2.1	482
5	Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 2001, 24, 725-744.	3.8	421
6	On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resources Research, 1999, 35, 3709-3722.	4.2	314
7	Feeding humanity through global food trade. Earth's Future, 2014, 2, 458-469.	6.3	300
8	Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 2001, 24, 695-705.	3.8	275
9	Mathematical models of vegetation pattern formation in ecohydrology. Reviews of Geophysics, 2009, 47, .	23.0	244
10	Ecohydrology of water-controlled ecosystems. Advances in Water Resources, 2002, 25, 1335-1348.	3.8	242
11	Nutrient cycling in bedform induced hyporheic zones. Geochimica Et Cosmochimica Acta, 2012, 84, 47-61.	3.9	191
12	MODELING THE INTERACTIONS BETWEEN RIVER MORPHODYNAMICS AND RIPARIAN VEGETATION. Reviews of Geophysics, 2013, 51, 379-414.	23.0	186
13	Hierarchy of models for meandering rivers and related morphodynamic processes. Reviews of Geophysics, 2007, 45, .	23.0	180
14	Significance of the riparian vegetation dynamics on meandering river morphodynamics. Water Resources Research, 2007, 43, .	4.2	170
15	A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Science of the Total Environment, 2020, 711, 134731.	8.0	168
16	Sinuosity-driven hyporheic exchange in meandering rivers. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	159
17	Nonlinear analysis of river flow time sequences. Water Resources Research, 1997, 33, 1353-1367.	4.2	157
18	Noise-induced stability in dryland plant ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10819-10822.	7.1	150

#	Article	IF	CITATIONS
19	A Probabilistic Analysis of Fireâ€Induced Treeâ€Grass Coexistence in Savannas. American Naturalist, 2006, 167, E79-E87.	2.1	139
20	Biogeochemical zonation due to intrameander hyporheic flow. Water Resources Research, 2010, 46, .	4.2	136
21	Preferential states of seasonal soil moisture: The impact of climate fluctuations. Water Resources Research, 2000, 36, 2209-2219.	4.2	132
22	Bedform-induced hyporheic exchange with unsteady flows. Advances in Water Resources, 2007, 30, 148-156.	3.8	132
23	On the long-term behavior of meandering rivers. Water Resources Research, 2005, 41, .	4.2	120
24	An analytical model to relate the vertical root distribution to climate and soil properties. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	119
25	Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. Environmental Research Letters, 2019, 14, 053001.	5.2	118
26	Turbulent boundary layers over permeable walls: scaling and near-wall structure. Journal of Fluid Mechanics, 2011, 687, 141-170.	3.4	116
27	Recent History and Geography of Virtual Water Trade. PLoS ONE, 2013, 8, e55825.	2.5	115
28	A continuous time random walk approach to the stream transport of solutes. Water Resources Research, 2007, 43, .	4.2	110
29	Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation. Water Resources Research, 2007, 43, .	4.2	109
30	Ecohydrology of Terrestrial Ecosystems. BioScience, 2010, 60, 898-907.	4.9	109
31	Drivers of the virtual water trade. Water Resources Research, 2014, 50, 17-28.	4.2	109
32	Riparian vegetation distribution induced by river flow variability: A stochastic approach. Water Resources Research, 2006, 42, .	4.2	108
33	Reduction of the hyporheic zone volume due to the streamâ€aquifer interaction. Geophysical Research Letters, 2008, 35, .	4.0	107
34	Significance of cutoff in meandering river dynamics. Journal of Geophysical Research, 2008, 113, .	3.3	95
35	Effect of vegetation-water table feedbacks on the stability and resilience of plant ecosystems. Water Resources Research, 2006, 42, .	4.2	94
36	Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological Modelling, 2015, 312, 200-210.	2.5	94

#	Article	IF	CITATIONS
37	Multivariate nonlinear prediction of river flows. Journal of Hydrology, 2001, 248, 109-122.	5.4	93
38	Stochastic soil moisture dynamics along a hillslope. Journal of Hydrology, 2003, 272, 264-275.	5.4	91
39	Global sensitivity of highâ€resolution estimates of crop water footprint. Water Resources Research, 2015, 51, 8257-8272.	4.2	91
40	Global Spatio-Temporal Patterns in Human Migration: A Complex Network Perspective. PLoS ONE, 2013, 8, e53723.	2.5	90
41	Tree-grass coexistence in Savannas: The role of spatial dynamics and climate fluctuations. Geophysical Research Letters, 1999, 26, 247-250.	4.0	84
42	Does globalization of water reduce societal resilience to drought?. Geophysical Research Letters, 2010, 37, .	4.0	83
43	Fuzzy Approach for Analysis of Pipe Networks. Journal of Hydraulic Engineering, 2002, 128, 93-101.	1.5	80
44	Ecohydrology of groundwaterâ€dependent ecosystems: 1. Stochastic water table dynamics. Water Resources Research, 2009, 45, .	4.2	80
45	Effect of river flow fluctuations on riparian vegetation dynamics: Processes and models. Advances in Water Resources, 2017, 110, 29-50.	3.8	80
46	On the temporal variability of the virtual water network. Geophysical Research Letters, 2012, 39, .	4.0	78
47	New Modularity-Based Approach to Segmentation of Water Distribution Networks. Journal of Hydraulic Engineering, 2014, 140, .	1.5	78
48	Fertility Island Formation and Evolution in Dryland Ecosystems. Ecology and Society, 2008, 13, .	2.3	75
49	Intraâ€meander hyporheic flow in alluvial rivers. Water Resources Research, 2008, 44, .	4.2	72
50	Intensive or extensive use of soil moisture: Plant strategies to cope with stochastic water availability. Geophysical Research Letters, 2001, 28, 4495-4497.	4.0	68
51	Global effects of local food-production crises: a virtual water perspective. Scientific Reports, 2016, 6, 18803.	3.3	68
52	Transient cerebral hypoperfusion and hypertensive events during atrial fibrillation: a plausible mechanism for cognitive impairment. Scientific Reports, 2016, 6, 28635.	3.3	68
53	Soil moisture and plant stress dynamics along the Kalahari precipitation gradient. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	63
54	Modelling river and riparian vegetation interactions and related importance for sustainable ecosystem management. Aquatic Sciences, 2009, 71, 266-278.	1.5	63

#	Article	IF	Citations
55	Modeling the impact of river damming on riparian vegetation. Journal of Hydrology, 2011, 396, 302-312.	5.4	62
56	Quantifying the impact of groundwater discharge on the surface–subsurface exchange. Hydrological Processes, 2009, 23, 2108-2116.	2.6	60
57	Water footprint of a large-sized food company: The case of Barilla pasta production. Water Resources and Industry, 2013, 1-2, 7-24.	3.9	59
58	A comparison of nonlinear flood forecasting methods. Water Resources Research, 2003, 39, .	4.2	57
59	Climate Dynamics: A Network-Based Approach for the Analysis of Global Precipitation. PLoS ONE, 2013, 8, e71129.	2.5	57
60	Mean first passage times of processes driven by white shot noise. Physical Review E, 2001, 63, 036105.	2.1	56
61	CLUES TO THE EXISTENCE OF DETERMINISTIC CHAOS IN RIVER FLOW. International Journal of Modern Physics B, 1996, 10, 1821-1862.	2.0	55
62	Biofilmâ€induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure. Geophysical Research Letters, 2017, 44, 4917-4925.	4.0	55
63	Vegetation patterns induced by random climate fluctuations. Geophysical Research Letters, 2006, 33, .	4.0	53
64	A Fast Track approach to deal with the temporal dimension of crop water footprint. Environmental Research Letters, 2017, 12, 074010.	5.2	53
65	Nonlinear analysis of the geometry of meandering rivers. Geophysical Research Letters, 2005, 32, .	4.0	52
66	Influence of river meandering dynamics on riparian vegetation pattern formation. Journal of Geophysical Research, 2006, 111 , .	3.3	52
67	Estimation of the dispersion coefficient in rivers with riparian vegetation. Advances in Water Resources, 2009, 32, 78-87.	3.8	52
68	Analysis of the small-scale structure of turbulence on smooth and rough walls. Physics of Fluids, 2003, 15, 35-46.	4.0	51
69	A flow resistance model for assessing the impact of vegetation on flood routing mechanics. Water Resources Research, 2011, 47, .	4.2	50
70	Patterns as indicators of productivity enhancement by facilitation and competition in dryland vegetation. Journal of Geophysical Research, 2006, 111 , .	3.3	49
71	Ecohydrology of groundwaterâ€dependent ecosystems: 2. Stochastic soil moisture dynamics. Water Resources Research, 2009, 45, .	4.2	49
72	An experimental contribution to near-wall measurements by means of a special laser Doppler anemometry technique. Experiments in Fluids, 2002, 32, 366-375.	2.4	48

#	Article	IF	CITATIONS
73	Smallâ€scale permeability heterogeneity has negligible effects on nutrient cycling in streambeds. Geophysical Research Letters, 2013, 40, 1118-1122.	4.0	48
74	Measuring economic water scarcity in agriculture: a cross-country empirical investigation. Environmental Science and Policy, 2020, 114, 73-85.	4.9	48
75	National water, food, and trade modeling framework: The case of Egypt. Science of the Total Environment, 2018, 639, 485-496.	8.0	47
76	Tailoring Centrality Metrics for Water Distribution Networks. Water Resources Research, 2019, 55, 2348-2369.	4.2	47
77	Shock transmission in the International Food Trade Network. PLoS ONE, 2018, 13, e0200639.	2.5	46
78	Interplay among river meandering, discharge stochasticity and riparian vegetation. Journal of Hydrology, 2010, 382, 138-144.	5.4	44
79	Spatial organization and drivers of the virtual water trade: a community-structure analysis. Environmental Research Letters, 2012, 7, 034007.	5.2	44
80	Vegetation dynamics induced by phreatophyte–aquifer interactions. Journal of Theoretical Biology, 2007, 248, 301-310.	1.7	43
81	A novel infrastructure modularity index for the segmentation of water distribution networks. Water Resources Research, 2014, 50, 7648-7661.	4.2	43
82	To trade or not to trade: Link prediction in the virtual water network. Advances in Water Resources, 2017, 110, 528-537.	3.8	43
83	Solution of nonlinear initial-boundary value problems by sinc collocation-interpolation methods. Computers and Mathematics With Applications, 1995, 29, 15-28.	2.7	42
84	Cardiovascular deconditioning during long-term spaceflight through multiscale modeling. Npj Microgravity, 2020, 6, 27.	3.7	42
85	Source identification in river pollution problems: A geostatistical approach. Water Resources Research, 2005, 41, .	4.2	41
86	An experimental investigation of turbulent flows over a hilly surface. Physics of Fluids, 2007, 19, 036601.	4.0	41
87	Effect of rainfall interannual variability on the stability and resilience of dryland plant ecosystems. Water Resources Research, 2007, 43, .	4.2	41
88	Coupled stochastic dynamics of water table and soil moisture in bare soil conditions. Water Resources Research, 2008, 44, .	4.2	41
89	The signature of randomness in riparian plant root distributions. Geophysical Research Letters, 2015, 42, 7098-7106.	4.0	41
90	Network structure classification and features of water distribution systems. Water Resources Research, 2017, 53, 3407-3423.	4.2	41

#	Article	IF	Citations
91	Higher ventricular rate during atrial fibrillation relates to increased cerebral hypoperfusions and hypertensive events. Scientific Reports, 2019, 9, 3779.	3.3	41
92	On the seasonal dynamics of mean soil moisture. Journal of Geophysical Research, 2002, 107, ACL 8-1.	3.3	40
93	Unsteady overland flow on flat surfaces induced by spatial permeability contrasts. Advances in Water Resources, 2011, 34, 1049-1058.	3.8	39
94	Modeling hyporheic exchange with unsteady stream discharge and bedform dynamics. Water Resources Research, 2013, 49, 4089-4099.	4.2	39
95	Duration and frequency of water stress in vegetation: An analytical model. Water Resources Research, 2000, 36, 2297-2307.	4.2	38
96	Local and global perspectives on the virtual water trade. Hydrology and Earth System Sciences, 2013, 17, 1205-1215.	4.9	38
97	Impact of atrial fibrillation on the cardiovascular system through a lumped-parameter approach. Medical and Biological Engineering and Computing, 2014, 52, 905-920.	2.8	38
98	Biodiversity enhancement induced by environmental noise. Journal of Theoretical Biology, 2008, 255, 332-337.	1.7	37
99	Impact of watershed topography on hyporheic exchange. Advances in Water Resources, 2016, 94, 400-411.	3.8	37
100	Visibility graph analysis of wall turbulence time-series. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 1-11.	2.1	37
101	A review on turbulent and vortical flow analyses via complex networks. Physica A: Statistical Mechanics and Its Applications, 2021, 563, 125476.	2.6	37
102	Impact of climate variability on the vegetation water stress. Journal of Geophysical Research, 2000, 105, 18013-18025.	3.3	36
103	Effect of streamflow stochasticity on bedform-driven hyporheic exchange. Advances in Water Resources, 2010, 33, 1367-1374.	3.8	35
104	Interaction between large and small scales in the canopy sublayer. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	33
105	Water disinfection by orifice-induced hydrodynamic cavitation. Ultrasonics Sonochemistry, 2020, 60, 104740.	8.2	33
106	Stochastic modelling of DO and BOD components in a stream with random inputs. Advances in Water Resources, 2006, 29, 1341-1350.	3.8	32
107	Gravityâ€driven water exchange between streams and hyporheic zones. Geophysical Research Letters, 2009, 36, .	4.0	32
108	Modelling the response of laboratory horizontal flow constructed wetlands to unsteady organic loads with HYDRUS-CWM1. Ecological Engineering, 2014, 68, 209-213.	3.6	32

#	Article	IF	CITATIONS
109	Role of discharge variability on pseudomeandering channel morphodynamics: Results from laboratory experiments. Journal of Geophysical Research, 2010, 115, .	3.3	31
110	Water and solute exchange through flat streambeds induced by large turbulent eddies. Journal of Hydrology, 2011, 402, 290-296.	5.4	31
111	Complex Networks Unveiling Spatial Patterns in Turbulence. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650223.	1.7	31
112	A change of perspective in network centrality. Scientific Reports, 2018, 8, 15269.	3.3	31
113	Noise-induced vegetation patterns in fire-prone savannas. Journal of Geophysical Research, 2007, 112, .	3. 3	30
114	Flood reduction as an ecosystem service of constructed wetlands for combined sewer overflow. Journal of Hydrology, 2018, 560, 150-159.	5 . 4	30
115	Detecting determinism and nonlinearity in river-flow time series. Hydrological Sciences Journal, 2003, 48, 763-780.	2.6	29
116	Ice ripple formation at large Reynolds numbers. Journal of Fluid Mechanics, 2012, 694, 225-251.	3.4	29
117	Embedding the intrinsic relevance of vertices in network analysis: the case of centrality metrics. Scientific Reports, 2020, 10, 3297.	3.3	29
118	On the scaling of large-scale structures in smooth-bed turbulent open-channel flows. Journal of Fluid Mechanics, 2020, 889, .	3.4	28
119	Turbulent friction in flows over permeable walls. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	27
120	Influence of weak trends on exceedance probability. Stochastic Hydrology & Hydraulics, 1998, 12, 1-14.	0.5	26
121	Sinc collocation-interpolation method for the simulation of nonlinear waves. Computers and Mathematics With Applications, 2003, 46, 1443-1453.	2.7	26
122	Numerical and experimental characterization of a novel modular passive micromixer. Biomedical Microdevices, 2012, 14, 849-862.	2.8	25
123	Community detection as a tool for complex pipe network clustering. Europhysics Letters, 2013, 103, 48001.	2.0	25
124	Modelling and Subject-Specific Validation of the Heart-Arterial Tree System. Annals of Biomedical Engineering, 2015, 43, 222-237.	2.5	25
125	Stochastic dynamics of BOD in a stream with random inputs. Advances in Water Resources, 2004, 27, 943-952.	3.8	24
126	From time-series to complex networks: Application to the cerebrovascular flow patterns in atrial fibrillation. Chaos, 2017, 27, 093107.	2.5	24

#	Article	lF	CITATIONS
127	Compensatory Effect between Aortic Stiffening and Remodelling during Ageing. PLoS ONE, 2015, 10, e0139211.	2.5	24
128	Stochastic description of water table fluctuations in wetlands. Geophysical Research Letters, 2010, 37, .	4.0	23
129	A phenomenological model to describe turbulent friction in permeableâ€wall flows. Geophysical Research Letters, 2012, 39, .	4.0	23
130	Hydrodynamic-Driven Stability Analysis of Morphological Patterns on Stalactites and Implications for Cave Paleoflow Reconstructions. Physical Review Letters, 2012, 108, 238501.	7.8	23
131	Mean root depth estimation at landslide slopes. Ecological Engineering, 2014, 69, 118-125.	3 . 6	23
132	Noiseâ€driven cooperative dynamics between vegetation and topography in riparian zones. Geophysical Research Letters, 2015, 42, 8021-8030.	4.0	23
133	Lagrangian network analysis of turbulent mixing. Journal of Fluid Mechanics, 2019, 865, 546-562.	3.4	22
134	On the Trajectory Method for the Reconstruction of Differential Equations from Time Series. Nonlinear Dynamics, 2000, 23, 13-33.	5.2	21
135	On the use of neural networks for dendroclimatic reconstructions. Geophysical Research Letters, 2000, 27, 791-794.	4.0	21
136	The influence of stochastic soil moisture dynamics on gaseous emissions of NO, N2O, and N2. Hydrological Sciences Journal, 2003, 48, 781-798.	2.6	21
137	Probabilistic modeling of nitrogen and carbon dynamics in water-limited ecosystems. Ecological Modelling, 2004, 179, 205-219.	2.5	21
138	Probabilistic nonlinear prediction of river flows. Water Resources Research, 2005, 41, .	4.2	21
139	A stochastic process for the interannual snow storage and melting dynamics. Journal of Geophysical Research, 2007, 112, .	3.3	21
140	Noiseâ€induced phenomena in riparian vegetation dynamics. Geophysical Research Letters, 2007, 34, .	4.0	21
141	Alteration of cerebrovascular haemodynamic patterns due to atrial fibrillation: an <i>in silico</i> investigation. Journal of the Royal Society Interface, 2017, 14, 20170180.	3.4	21
142	Impaired coronary blood flow at higher heart rates during atrial fibrillation: Investigation via multiscale modelling. Computer Methods and Programs in Biomedicine, 2019, 175, 95-102.	4.7	21
143	Propagation of toxic substances in the urban atmosphere: A complex network perspective. Atmospheric Environment, 2019, 198, 291-301.	4.1	21
144	Experimental investigation of vertical turbulent transport of a passive scalar in a boundary layer: Statistics and visibility graph analysis. Physical Review Fluids, 2019, 4, .	2.5	21

#	Article	IF	CITATIONS
145	Rate Control Management of Atrial Fibrillation: May a Mathematical Model Suggest an Ideal Heart Rate?. PLoS ONE, 2015, 10, e0119868.	2.5	21
146	Can microbial fuel cells be an effective mitigation strategy for methane emissions from paddy fields?. Ecological Engineering, 2013, 60, 167-171.	3.6	20
147	Multiscale mathematical modeling vs. the generalized transfer function approach for aortic pressure estimation: a comparison with invasive data. Hypertension Research, 2019, 42, 690-698.	2.7	20
148	Street canyon ventilation: Combined effect of crossâ€section geometry and wall heating. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 2347-2367.	2.7	20
149	Compliance with EAT–Lancet dietary guidelines would reduce global water footprint but increase it for 40% of the world population. Nature Food, 2022, 3, 143-151.	14.0	20
150	Green's Function of the Linearized de Saint-Venant Equations. Journal of Engineering Mechanics - ASCE, 2006, 132, 125-132.	2.9	19
151	Flume Experiments on Turbulent Flows Across Gaps of Permeable and Impermeable Boundaries. Boundary-Layer Meteorology, 2013, 147, 21-39.	2.3	19
152	Inter-species competition–facilitation in stochastic riparian vegetation dynamics. Journal of Theoretical Biology, 2013, 318, 13-21.	1.7	18
153	Effect of water table fluctuations on phreatophytic root distribution. Journal of Theoretical Biology, 2014, 360, 102-108.	1.7	18
154	Fluid dynamics of heart valves during atrial fibrillation: a lumped parameter-based approach. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 1060-1068.	1.6	18
155	Increased beat-to-beat variability of cerebral microcirculatory perfusion during atrial fibrillation: a near-infrared spectroscopy study. Europace, 2021, 23, 1219-1226.	1.7	18
156	A Computational Study on the Relation between Resting Heart Rate and Atrial Fibrillation Hemodynamics under Exercise. PLoS ONE, 2017, 12, e0169967.	2.5	18
157	Detecting nonlinearity in time series driven by non-Gaussian noise: the case of river flows. Nonlinear Processes in Geophysics, 2004, 11 , 463-470.	1.3	17
158	Modal versus nonmodal linear stability analysis of river dunes. Physics of Fluids, 2011, 23, .	4.0	17
159	Spatial pattern formation induced by Gaussian white noise. Mathematical Biosciences, 2011, 229, 174-184.	1.9	17
160	The past and future of food stocks. Environmental Research Letters, 2016, 11, 035010.	5 . 2	17
161	Inequalities in the networks of virtual water flow. Eos, 2012, 93, 309-310.	0.1	16
162	General metrics for segmenting infrastructure networks. Journal of Hydroinformatics, 2015, 17, 505-517.	2.4	16

#	Article	IF	CITATIONS
163	Charting out the future agricultural trade and its impact on water resources. Science of the Total Environment, 2020, 714, 136626.	8.0	16
164	Long-term morphological river response to hydrological changes. Advances in Water Resources, 2011, 34, 1643-1655.	3.8	15
165	Bed evolution measurement with flowing water in morphodynamics experiments. Earth Surface Processes and Landforms, 2012, 37, 818-827.	2.5	15
166	Stochastic resonance and coherence resonance in groundwater-dependent plant ecosystems. Journal of Theoretical Biology, 2012, 293, 65-73.	1.7	15
167	On the convective-absolute nature of river bedform instabilities. Physics of Fluids, 2014, 26, .	4.0	15
168	Spatial characterization of turbulent channel flow via complex networks. Physical Review E, 2018, 98, 013107.	2.1	15
169	Large-to-small scale frequency modulation analysis in wall-bounded turbulence via visibility networks. Journal of Fluid Mechanics, 2021, 918, .	3.4	15
170	Computational fluid dynamics modelling of left valvular heart diseases during atrial fibrillation. Peerl, 2016, 4, e2240.	2.0	15
171	A Spatial Model for Soil–Atmosphere Interaction: Model Construction and Linear Stability Analysis. Journal of Hydrometeorology, 2000, 1, 61-74.	1.9	14
172	Convective nature of the planimetric instability in meandering river dynamics. Physical Review E, 2006, 73, 026311.	2.1	14
173	Nonnormality and transient behavior of the de Saintâ€Venantâ€Exner equations. Water Resources Research, 2009, 45, .	4.2	14
174	Transient growth induces unexpected deterministic spatial patterns in the Turing process. Europhysics Letters, 2011, 95, 18003.	2.0	14
175	A spectral approach for the stability analysis of turbulent open-channel flows over granular beds. Theoretical and Computational Fluid Dynamics, 2012, 26, 51-80.	2.2	14
176	On the influence of collinear surface waves on turbulence in smooth-bed open-channel flows. Journal of Fluid Mechanics, 2021, 924, .	3 . 4	14
177	Transport of reactive chemicals in sediment-laden streams. Advances in Water Resources, 2003, 26, 815-831.	3.8	13
178	Longitudinal dispersion in vegetated rivers with stochastic flows. Advances in Water Resources, 2010, 33, 562-571.	3.8	13
179	A shallow-water theory of river bedforms in supercritical conditions. Physics of Fluids, 2012, 24, .	4.0	13
180	Spatio-temporal stochastic resonance induces patterns in wetland vegetation dynamics. Ecological Complexity, 2012, 10, 93-101.	2.9	13

#	Article	IF	CITATIONS
181	Supraglacial channel inception: Modeling and processes. Water Resources Research, 2015, 51, 7044-7063.	4.2	13
182	Impact of seasonal forcing on reactive ecological systems. Journal of Theoretical Biology, 2017, 419, 23-35.	1.7	13
183	Trade of economically and physically scarce virtual water in the global food network. Scientific Reports, 2021, 11, 22806.	3.3	13
184	Plant water uptake strategies to cope with stochastic rainfall. Advances in Water Resources, 2013, 53, 118-130.	3.8	12
185	Role of water flow in modeling methane emissions from flooded paddy soils. Advances in Water Resources, 2013, 52, 261-274.	3.8	12
186	The globalization of riverine environmental resources through the food trade. Environmental Research Letters, 2019, 14, 024020.	5.2	12
187	Identification of source terms in nonlinear convection diffusion phenomena by sinc collocation-interpolation methods. Mathematical and Computer Modelling, 1997, 26, 69-79.	2.0	11
188	Influence of suspended sediment on the transport processes of nonlinear reactive substances in turbulent streams. Journal of Fluid Mechanics, 2002, 472, 307-331.	3.4	11
189	Noise-induced transitions in state-dependent dichotomous processes. Physical Review E, 2008, 78, 031137.	2.1	11
190	The impacts of increasing current velocity on the drift of Simulium monticola (Diptera: Simuliidae): a laboratory approach. Italian Journal of Zoology, 2013, 80, 443-448.	0.6	11
191	Changes in bacteria composition and efficiency of constructed wetlands under sustained overloads: A modeling experiment. Science of the Total Environment, 2018, 612, 1480-1487.	8.0	11
192	Effects of atrial fibrillation on the arterial fluid dynamics: a modelling perspective. Meccanica, 2018, 53, 3251-3267.	2.0	11
193	Tools for reconstructing the bilateral trade network: a critical assessment. Economic Systems Research, 2020, 32, 378-394.	2.7	11
194	Influence of heterogeneity on the flow in unconfined aquifers. Journal of Hydrology, 2000, 228, 150-159.	5.4	10
195	Thin-film-induced morphological instabilities over calcite surfaces. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150031.	2.1	10
196	Central Pressure Appraisal: Clinical Validation of a Subject-Specific Mathematical Model. PLoS ONE, 2016, 11, e0151523.	2.5	10
197	Stochastic ice stream dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4594-600.	7.1	10
198	The environmental cost of a reference withdrawal from surface waters: Definition and geography. Advances in Water Resources, 2017, 110, 228-237.	3.8	10

#	Article	IF	CITATIONS
199	Nonlinear convection-dispersion models with a localized pollutant source, llâ€"A class of inverse problems. Mathematical and Computer Modelling, 2005, 42, 601-612.	2.0	9
200	Community Detection as a Tool for District Metered Areas Identification. Procedia Engineering, 2014, 70, 1518-1523.	1.2	9
201	Recovery times of riparian vegetation. Water Resources Research, 2016, 52, 2934-2950.	4.2	9
202	Non-invasive aortic systolic pressure and pulse wave velocity estimation in a primary care setting: An in silico study. Medical Engineering and Physics, 2017, 42, 91-98.	1.7	9
203	Role of the Hyporheic Zone in Increasing the Resilience of Mountain Streams Facing Intermittency. Water (Switzerland), 2020, 12, 2034.	2.7	9
204	HYDROLOGICAL AND GEOMORPHOLOGICAL SIGNIFICANCE OF RIPARIAN VEGETATION IN DRYLANDS. , 2006, , 161-179.		9
205	Convective-absolute nature of ripple instabilities on ice and icicles. Physical Review Fluids, 2017, 2, .	2.5	9
206	A computational analysis of atrial fibrillation effects on coronary perfusion across the different myocardial layers. Scientific Reports, 2022, 12, 841.	3.3	9
207	Cardiovascular Response to Posture Changes: Multiscale Modeling and in vivo Validation During Head-Up Tilt. Frontiers in Physiology, 2022, 13, 826989.	2.8	9
208	Crossing properties for geophysical systems forced by Poisson noise. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	8
209	Spatial Distribution of the International Food Prices: Unexpected Heterogeneity and Randomness. Ecological Economics, 2019, 159, 122-132.	5.7	8
210	Nonlinear analysis of near-wall turbulence time series. Flow, Turbulence and Combustion, 1996, 57, 235-261.	0.2	7
211	Brief Note – Inception of Channelization Over a Non-flat Bed. Meccanica, 2000, 35, 457-461.	2.0	7
212	Test to determine the Markov order of a time series. Physical Review E, 2007, 75, 011126.	2.1	7
213	Precursors of state transitions in stochastic systems with delay. Theoretical Ecology, 2013, 6, 265-270.	1.0	7
214	Water Distribution System Modeling and Optimization: A Case Study. Procedia Engineering, 2015, 119, 719-724.	1.2	7
215	Groundwater impact on methane emissions from flooded paddy fields. Advances in Water Resources, 2015, 83, 340-350.	3.8	7
216	River bedform inception by flow unsteadiness: A modal and nonmodal analysis. Physical Review E, 2016, 93, 053110.	2.1	7

#	Article	IF	Citations
217	Coronary fluid mechanics in an ageing cardiovascular system. Meccanica, 2017, 52, 503-514.	2.0	7
218	In silico analysis of the anti-hypertensive drugs impact on myocardial oxygen balance. Biomechanics and Modeling in Mechanobiology, 2017, 16, 1035-1047.	2.8	7
219	Wall-induced anisotropy effects on turbulent mixing in channel flow: A network-based analysis. Physical Review E, 2020, 102, 043109.	2.1	7
220	A simple experimental equation for the bursting cycle. Physics of Fluids, 1998, 10, 3023-3026.	4.0	6
221	Reconstructing the temporal dynamics of snow cover from observations. Geophysical Research Letters, 2001, 28, 2975-2978.	4.0	6
222	Nonlinear convection-dispersion models with a distributed pollutant source I: Direct initial boundary value problems. Mathematical and Computer Modelling, 2004, 39, 1023-1034.	2.0	6
223	Transient growths of stable modes in riverbed dynamics. Europhysics Letters, 2012, 100, 64002.	2.0	6
224	Decreasing of methanogenic activity in paddy fields via lowering ponding water temperature: A modeling investigation. Soil Biology and Biochemistry, 2014, 75, 211-222.	8.8	6
225	Mutual information analysis to approach nonlinearity in groundwater stochastic fields. Stochastic Environmental Research and Risk Assessment, 2018, 32, 2933-2942.	4.0	6
226	Combining 4D Flow MRI and Complex Networks Theory to Characterize the Hemodynamic Heterogeneity in Dilated and Non-dilated Human Ascending Aortas. Annals of Biomedical Engineering, 2021, 49, 2441-2453.	2.5	6
227	An innovative approach to select urban-rural sites for Urban Heat Island analysis: the case of Turin (Italy). Urban Climate, 2022, 42, 101099.	5.7	6
228	Transition between stable states in the dynamics of soil development. Geophysical Research Letters, 2001, 28, 595-598.	4.0	5
229	A stochastic model for vegetation water stress. Ecohydrology, 2010, 3, 177-188.	2.4	5
230	Indicators of Collapse in Systems Undergoing Unsustainable Growth. Bulletin of Mathematical Biology, 2015, 77, 339-347.	1.9	5
231	Overshoots in the water-level control of hydropower plants. Renewable Energy, 2019, 131, 800-810.	8.9	5
232	Dynamics of bubbles under stochastic pressure forcing. Physical Review E, 2021, 103, 023108.	2.1	5
233	Hydrological and Geomorphological Significance of Riparian Vegetation in Drylands. , 2019, , 239-275.		5
234	Is water consumption embedded in crop prices? A global data-driven analysis. Environmental Research Letters, 2020, 15, 104016.	5.2	5

#	Article	IF	CITATIONS
235	Influence Zone of Recharging-Dewatering Actions in Unconfined Aquifer. Journal of Irrigation and Drainage Engineering - ASCE, 2000, 126, 110-112.	1.0	4
236	Comment on "Pore water flow due to nearâ€bed turbulence and associated solute transfer in a stream or lake sediment bed―by M. Higashino et al Water Resources Research, 2010, 46, .	4.2	4
237	Noise-sustained fluctuations in stochastic dynamics with a delay. Physical Review E, 2012, 85, 041106.	2.1	4
238	Effect of sampling time in the laboratory investigation of braided rivers. Water Resources Research, 2017, 53, 5184-5197.	4.2	4
239	Fault detection in level and flow rate sensors for safe and performant remote-control in a water supply system. Journal of Hydroinformatics, 2020, 22, 132-147.	2.4	4
240	Network analysis of Reynolds number scaling in wall-bounded Lagrangian mixing. Physical Review Fluids, 2021, 6, .	2.5	4
241	Role of trade agreements in the global cereal market and implications for virtual water flows. Scientific Reports, 2022, 12, 6790.	3.3	4
242	Generalized collocation method for two-dimensional reaction-diffusion problems with homogeneous Neumann boundary conditions. Computers and Mathematics With Applications, 2008, 56, 2360-2370.	2.7	3
243	Flow non-normality-induced transient growth in superposed Newtonian and non-Newtonian fluid layers. Physical Review E, 2009, 80, 036312.	2.1	3
244	Transport–diffusion models with nonlinear boundary conditions and solution by generalized collocation methods. Computers and Mathematics With Applications, 2009, 58, 558-565.	2.7	3
245	Recovering the Release History of a Pollutant Intrusion into a Water Supply System through a Geostatistical Approach. Journal of Water Resources Planning and Management - ASCE, 2013, 139, 418-425.	2.6	3
246	Modularity Index for Hydraulic System Segmentation. Procedia Engineering, 2014, 89, 1152-1159.	1.2	3
247	Testing a Patient-Specific In-Silico Model to Noninvasively Estimate Central Blood Pressure. Cardiovascular Engineering and Technology, 2021, 12, 144-157.	1.6	3
248	A Closed-Loop Multiscale Model of the Cardiovascular System: Application to Heart Pacing and Open-Loop Response. IFMBE Proceedings, 2020, , 577-585.	0.3	3
249	Vulnerability of cities to toxic airborne releases is written in their topology. Scientific Reports, 2021, 11, 23029.	3.3	3
250	Hydrodynamic dispersion in an artesian aquifer during flow to a partially penetrating well. Journal of Hydrology, 1997, 201, 183-210.	5.4	2
251	Reply [to "Comment on â€~Nonlinear analysis of river flow time sequences' by Amilcare Porporato and Luca Ridolfiâ€]. Water Resources Research, 1999, 35, 899-901.	4.2	2
252	WQNetXL: A MS-excel Water Quality System Tool for WDNs. Procedia Engineering, 2014, 89, 262-272.	1.2	2

#	Article	IF	Citations
253	Age distribution dynamics with stochastic jumps in mortality. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170451.	2.1	2
254	Hydraulics of braided river dynamics. Insights from flume experiments. E3S Web of Conferences, 2018, 40, 02020.	0.5	2
255	Centrality metric for the vulnerability of urban networks to toxic releases. Physical Review E, 2020, 101, 032312.	2.1	2
256	A review of multiscale 0D–1D computational modeling of coronary circulation with applications to cardiac arrhythmias. Reviews in Cardiovascular Medicine, 2021, 22, 1461.	1.4	2
257	Some dynamical properties of a differential model for the bursting cycle in the near-wall turbulence. Physics of Fluids, 2002, 14, 4278-4283.	4.0	1
258	Probabilistic prediction of real-world time series: A local regression approach. Geophysical Research Letters, 2007, 34, .	4.0	1
259	Generalized collocation method for linear and nonlinear convection-diffusion models. KSCE Journal of Civil Engineering, 2011, 15, 589-593.	1.9	1
260	Analysis of Relationship between Porosity and Roughness of Surface Based on Fractal Model. Advanced Materials Research, 0, 683, 413-418.	0.3	1
261	Cerebral spatially resolved near-infrared spectroscopy (SRS-NIRS): paving the way for non-invasive assessment of cerebral hemodynamics during atrial fibrillation. Minerva Cardiology and Angiology, 2021, 69, 124-126.	0.7	1
262	Hydrodynamic holes and Froude horizons: Circular shallow water profiles for astrophysical analogs. Physical Review Research, 2021, 3, .	3.6	1
263	Different Impact of Heart Rate Variability in the Deep Cerebral and Central Hemodynamics at Rest: An in silico Investigation. Frontiers in Neuroscience, 2021, 15, 600574.	2.8	1
264	Rayleigh-Bénard convection with thermal boundary inhomogeneities. Physical Review E, 2022, 105, 025108.	2.1	1
265	Reply to comment by S. Nadarajah on "Riparian vegetation distribution induced by river flow variability: A stochastic approach― Water Resources Research, 2007, 43, .	4.2	0
266	Closure to "Green's Function of the Linearized de Saint-Venant Equations―by Luca Ridolfi, Amilcare Porporato, and Roberto Revelli. Journal of Engineering Mechanics - ASCE, 2008, 134, 809-809.	2.9	0
267	A lumped hydrodynamic model to assess ageing and hypertension effects on the aortic stiffness. European Journal of Mechanics, B/Fluids, 2012, 35, 111-116.	2.5	0
268	P5.6 CORONARY FLUID MECHANICS IN AN AGEING CARDIOVASCULAR SYSTEM. Artery Research, 2015, 12, 21.	0.6	0
269	Dynamical Systems Driven by Dichotomous Noise. Modeling and Simulation in Science, Engineering and Technology, 2013, , 59-77.	0.6	0
270	The Globalisation of Food and Water: The Italian Case. , 2015, , 145-158.		0

#	Article	IF	CITATIONS
271	To What Extent Does Heart Rate Alter the Cerebral Hemodynamic Patterns During Atrial Fibrillation?. IFMBE Proceedings, 2020, , 108-116.	0.3	o
272	108â€f Atrial fibrillation effects on coronary perfusion across the different myocardial layers: a computational analysis. European Heart Journal Supplements, 2021, 23, .	0.1	0