Thomas W Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8592672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The global distribution and burden of dengue. Nature, 2013, 496, 504-507.	27.8	7,138
2	The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. ELife, 2015, 4, e08347.	6.0	1,428
3	The current and future global distribution and population at risk of dengue. Nature Microbiology, 2019, 4, 1508-1515.	13.3	645
4	Biased efficacy estimates in phase-III dengue vaccine trials due to heterogeneous exposure and differential detectability of primary infections across trial arms. PLoS ONE, 2019, 14, e0210041.	2.5	606
5	Consequences of the Expanding Global Distribution of Aedes albopictus for Dengue Virus Transmission. PLoS Neglected Tropical Diseases, 2010, 4, e646.	3.0	566
6	DISPERSAL OF THE DENGUE VECTOR AEDES AEGYPTI WITHIN AND BETWEEN RURAL COMMUNITIES. American Journal of Tropical Medicine and Hygiene, 2005, 72, 209-220.	1.4	495
7	Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens. PLoS Pathogens, 2012, 8, e1002588.	4.7	432
8	House-to-house human movement drives dengue virus transmission. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 994-999.	7.1	416
9	The Role of Human Movement in the Transmission of Vector-Borne Pathogens. PLoS Neglected Tropical Diseases, 2009, 3, e481.	3.0	414
10	Longitudinal Studies of <i>Aedes aegypti</i> (Diptera: Culicidae) in Thailand and Puerto Rico: Blood Feeding Frequency. Journal of Medical Entomology, 2000, 37, 89-101.	1.8	405
11	Epidemic arboviral diseases: priorities for research and public health. Lancet Infectious Diseases, The, 2017, 17, e101-e106.	9.1	394
12	Defining Challenges and Proposing Solutions for Control of the Virus Vector Aedes aegypti. PLoS Medicine, 2008, 5, e68.	8.4	360
13	Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites and Vectors, 2013, 6, 351.	2.5	357
14	Asymptomatic humans transmit dengue virus to mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14688-14693.	7.1	355
15	The importance of vector control for the control and elimination of vector-borne diseases. PLoS Neglected Tropical Diseases, 2020, 14, e0007831.	3.0	345
16	A Critical Assessment of Vector Control for Dengue Prevention. PLoS Neglected Tropical Diseases, 2015, 9, e0003655.	3.0	328
17	A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. Journal of the Royal Society Interface, 2013, 10, 20120921.	3.4	306
18	Dispersal of the dengue vector Aedes aegypti within and between rural communities. American Journal of Tropical Medicine and Hygiene, 2005, 72, 209-20.	1.4	290

#	Article	IF	CITATIONS
19	Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites and Vectors, 2014, 7, 338.	2.5	280
20	Longitudinal Studies of <i>Aedes aegypti</i> (Diptera: Culicidae) in Thailand and Puerto Rico: Population Dynamics. Journal of Medical Entomology, 2000, 37, 77-88.	1.8	226
21	CHARACTERISTICS OF THE SPATIAL PATTERN OF THE DENGUE VECTOR, AEDES AEGYPTI, IN IQUITOS, PERU. American Journal of Tropical Medicine and Hygiene, 2003, 69, 494-505.	1.4	226
22	Spatial and Temporal Clustering of Dengue Virus Transmission in Thai Villages. PLoS Medicine, 2008, 5, e205.	8.4	221
23	Temporal and Geographic Patterns of <i>Aedes aegypti</i> (Diptera: Culicidae) Production in Iquitos, Peru. Journal of Medical Entomology, 2004, 41, 1123-1142.	1.8	189
24	Using GPS Technology to Quantify Human Mobility, Dynamic Contacts and Infectious Disease Dynamics in a Resource-Poor Urban Environment. PLoS ONE, 2013, 8, e58802.	2.5	177
25	Epidemiology of Dengue Virus in Iquitos, Peru 1999 to 2005: Interepidemic and Epidemic Patterns of Transmission. PLoS Neglected Tropical Diseases, 2010, 4, e670.	3.0	159
26	Integrated Aedes management for the control of Aedes-borne diseases. PLoS Neglected Tropical Diseases, 2018, 12, e0006845.	3.0	153
27	Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110, 107-117.	1.8	149
28	Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 185-197.	1.8	142
29	Skeeter Buster: A Stochastic, Spatially Explicit Modeling Tool for Studying Aedes aegypti Population Replacement and Population Suppression Strategies. PLoS Neglected Tropical Diseases, 2009, 3, e508.	3.0	141
30	Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. American Journal of Tropical Medicine and Hygiene, 2003, 69, 494-505.	1.4	137
31	Reduced Risk of Disease During Postsecondary Dengue Virus Infections. Journal of Infectious Diseases, 2013, 208, 1026-1033.	4.0	128
32	Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages. PLoS Neglected Tropical Diseases, 2012, 6, e1730.	3.0	127
33	Heterogeneity, Mixing, and the Spatial Scales of Mosquito-Borne Pathogen Transmission. PLoS Computational Biology, 2013, 9, e1003327.	3.2	124
34	Evidence-based vector control? Improving the quality of vector control trials. Trends in Parasitology, 2015, 31, 380-390.	3.3	119
35	Contributions from the silent majority dominate dengue virus transmission. PLoS Pathogens, 2018, 14, e1006965.	4.7	118
36	A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens. Parasites and Vectors, 2014, 7, 276.	2.5	116

#	Article	IF	CITATIONS
37	Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus. International Journal of Health Geographics, 2009, 8, 68.	2.5	114
38	Socially structured human movement shapes dengue transmission despite the diffusive effect of mosquito dispersal. Epidemics, 2014, 6, 30-36.	3.0	109
39	Characteristics of the Spatial Pattern of the Dengue Vector, Aedes aegypti, in Iquitos, Peru. Advances in Spatial Science, 2010, , 203-225.	0.6	106
40	Time-varying, serotype-specific force of infection of dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2694-702.	7.1	105
41	Adult Size and Distribution of <i>Aedes aegypti</i> (Diptera: Culicidae) Associated with Larval Habitats in Iquitos, Peru. Journal of Medical Entomology, 2004, 41, 634-642.	1.8	96
42	Long-Term and Seasonal Dynamics of Dengue in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2014, 8, e3003.	3.0	96
43	Heterogeneous Feeding Patterns of the Dengue Vector, Aedes aegypti, on Individual Human Hosts in Rural Thailand. PLoS Neglected Tropical Diseases, 2014, 8, e3048.	3.0	93
44	Underrecognized Mildly Symptomatic Viremic Dengue Virus Infections in Rural Thai Schools and Villages. Journal of Infectious Diseases, 2012, 206, 389-398.	4.0	84
45	The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. PLoS Neglected Tropical Diseases, 2017, 11, e0005429.	3.0	81
46	Spatial Dimensions of Dengue Virus Transmission across Interepidemic and Epidemic Periods in Iquitos, Peru (1999–2003). PLoS Neglected Tropical Diseases, 2012, 6, e1472.	3.0	74
47	IDENTIFICATION OF THE PEOPLE FROM WHOM ENGORGED AEDES AEGYPTI TOOK BLOOD MEALS IN FLORIDA, PUERTO RICO, USING POLYMERASE CHAIN REACTION-BASED DNA PROFILING. American Journal of Tropical Medicine and Hygiene, 2003, 68, 437-446.	1.4	74
48	Assessing the epidemiological effect of wolbachia for dengue control. Lancet Infectious Diseases, The, 2015, 15, 862-866.	9.1	73
49	Quantifying the Epidemiological Impact of Vector Control on Dengue. PLoS Neglected Tropical Diseases, 2016, 10, e0004588.	3.0	70
50	Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2014, 8, e3038.	3.0	68
51	Dengue disease outbreak definitions are implicitly variable. Epidemics, 2015, 11, 92-102.	3.0	68
52	Determinants of Heterogeneous Blood Feeding Patterns by Aedes aegypti in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2014, 8, e2702.	3.0	63
53	Improving the built environment in urban areas to control <i>Aedes aegypti</i> -borne diseases. Bulletin of the World Health Organization, 2017, 95, 607-608.	3.3	60
54	Strengths and Weaknesses of Global Positioning System (GPS) Data-Loggers and Semi-structured Interviews for Capturing Fine-scale Human Mobility: Findings from Iquitos, Peru. PLoS Neglected Tropical Diseases, 2014, 8, e2888.	3.0	59

#	Article	IF	CITATIONS
55	Parameterization and Sensitivity Analysis of a Complex Simulation Model for Mosquito Population Dynamics, Dengue Transmission, and Their Control. American Journal of Tropical Medicine and Hygiene, 2011, 85, 257-264.	1.4	54
56	Theory and data for simulating fine-scale human movement in an urban environment. Journal of the Royal Society Interface, 2014, 11, 20140642.	3.4	53
57	Assessing and Maximizing the Acceptability of Global Positioning System Device Use for Studying the Role of Human Movement in Dengue Virus Transmission in Iquitos, Peru. American Journal of Tropical Medicine and Hygiene, 2010, 82, 723-730.	1.4	48
58	Efficacy of Aedes aegypti control by indoor Ultra Low Volume (ULV) insecticide spraying in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2018, 12, e0006378.	3.0	46
59	Coupled Heterogeneities and Their Impact on Parasite Transmission and Control. Trends in Parasitology, 2016, 32, 356-367.	3.3	41
60	Identification of the people from whom engorged Aedes aegypti took blood meals in Florida, Puerto Rico, using polymerase chain reaction-based DNA profiling. American Journal of Tropical Medicine and Hygiene, 2003, 68, 437-46.	1.4	40
61	Comparison of Two Active Surveillance Programs for the Detection of Clinical Dengue Cases in Iquitos, Peru. American Journal of Tropical Medicine and Hygiene, 2009, 80, 656-660.	1.4	33
62	Calling in sick: impacts of fever on intra-urban human mobility. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160390.	2.6	31
63	An agent-based model of dengue virus transmission shows how uncertainty about breakthrough infections influences vaccination impact projections. PLoS Computational Biology, 2019, 15, e1006710.	3.2	31
64	Comparison of two active surveillance programs for the detection of clinical dengue cases in Iquitos, Peru. American Journal of Tropical Medicine and Hygiene, 2009, 80, 656-60.	1.4	29
65	Optimizing the deployment of ultra-low volume and targeted indoor residual spraying for dengue outbreak response. PLoS Computational Biology, 2020, 16, e1007743.	3.2	27
66	Model-based assessment of public health impact and cost-effectiveness of dengue vaccination following screening for prior exposure. PLoS Neglected Tropical Diseases, 2019, 13, e0007482.	3.0	23
67	Efficacy of a spatial repellent for control of <i>Aedes</i> -borne virus transmission: A cluster-randomized trial in Iquitos, Peru. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	23
68	Estimating the impact of city-wide Aedes aegypti population control: An observational study in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2019, 13, e0007255.	3.0	22
69	Epidemiology of influenzaâ€like illness in the Amazon Basin of Peru, 2008–2009. Influenza and Other Respiratory Viruses, 2010, 4, 235-243.	3.4	21
70	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. PLoS Computational Biology, 2020, 16, e1007446.	3.2	20
71	Disease-driven reduction in human mobility influences human-mosquito contacts and dengue transmission dynamics. PLoS Computational Biology, 2021, 17, e1008627.	3.2	19
72	The impact of insecticide treated curtains on dengue virus transmission: A cluster randomized trial in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2020, 14, e0008097.	3.0	18

#	Article	IF	CITATIONS
73	Dengue illness impacts daily human mobility patterns in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2019, 13, e0007756.	3.0	17
74	Pandemic-associated mobility restrictions could cause increases in dengue virus transmission. PLoS Neglected Tropical Diseases, 2021, 15, e0009603.	3.0	17
75	4. Insecticide-based approaches for dengue vector control. Ecology and Control of Vector-Borne Diseases, 2021, , 59-89.	0.7	14
76	Rapid evolution of knockdown resistance haplotypes in response to pyrethroid selection in <i>Aedes aegypti</i> . Evolutionary Applications, 2021, 14, 2098-2113.	3.1	14
77	Factors Associated with Correct and Consistent Insecticide Treated Curtain Use in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2016, 10, e0004409.	3.0	10
78	Experiences with insecticide-treated curtains: a qualitative study in Iquitos, Peru. BMC Public Health, 2016, 16, 582.	2.9	9
79	Measuring health related quality of life for dengue patients in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2020, 14, e0008477.	3.0	4
80	The impact of dengue illness on social distancing and caregiving behavior. PLoS Neglected Tropical Diseases, 2021, 15, e0009614.	3.0	0
81	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16, e1007446.		0
82	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16, e1007446.		0
83	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16, e1007446.		0
84	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16, e1007446.		0
85	Title is missing!. , 2020, 16, e1007743.		0
86	Title is missing!. , 2020, 16, e1007743.		0
87	Title is missing!. , 2020, 16, e1007743.		0
88	Title is missing!. , 2020, 16, e1007743.		0

Title is missing!. , 2020, 16, e1007743. 88