
Noriyuki Nishimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8591932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science, 2009, 324, 1068-1071.	12.6	2,385
2	Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO ₂ , and Ca ²⁺ Signaling. Annual Review of Plant Biology, 2010, 61, 561-591.	18.7	1,165
3	SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature, 2008, 452, 487-491.	27.8	733
4	Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes and Development, 2010, 24, 1695-1708.	5.9	592
5	Structural Mechanism of Abscisic Acid Binding and Signaling by Dimeric PYR1. Science, 2009, 326, 1373-1379.	12.6	457
6	PYR/PYL/RCAR family members are major <i>inâ€vivo</i> ABI1 protein phosphatase 2Câ€interacting proteins in Arabidopsis. Plant Journal, 2010, 61, 290-299.	5.7	451
7	ABA-Hypersensitive Germination3 Encodes a Protein Phosphatase 2C (AtPP2CA) That Strongly Regulates Abscisic Acid Signaling during Germination among Arabidopsis Protein Phosphatase 2Cs. Plant Physiology, 2006, 140, 115-126.	4.8	344
8	ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant Journal, 2007, 50, 935-949.	5.7	260
9	FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. ELife, 2014, 3, e01739.	6.0	213
10	Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochemical and Biophysical Research Communications, 2004, 323, 72-78.	2.1	186
11	Chemical Genetics Reveals Negative Regulation of Abscisic Acid Signaling by a Plant Immune Response Pathway. Current Biology, 2011, 21, 990-997.	3.9	152
12	Calcium elevationâ€dependent and attenuated resting calciumâ€dependent abscisic acid induction of stomatal closure and abscisic acidâ€induced enhancement of calcium sensitivities of Sâ€type anion and inwardâ€rectifying K ⁺ channels in Arabidopsis guard cells. Plant Journal, 2009, 59, 207-220.	5.7	142
13	Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nature Communications, 2018, 9, 2132.	12.8	138
14	Analysis of ABA Hypersensitive Germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis. Plant Journal, 2005, 44, 972-984.	5.7	131
15	The Lesion-Mimic Mutant <i>cpr22</i> Shows Alterations in Abscisic Acid Signaling and Abscisic Acid Insensitivity in a Salicylic Acid-Dependent Manner. Plant Physiology, 2010, 152, 1901-1913.	4.8	117
16	ldentification of Cyclic GMP-Activated Nonselective Ca2+-Permeable Cation Channels and Associated <i>CNGC5</i> and <i>CNGC6</i> Genes in Arabidopsis Guard Cells Â. Plant Physiology, 2013, 163, 578-590.	4.8	111
17	Isolation and Characterization of Novel Mutants Affecting the Abscisic Acid Sensitivity of Arabidopsis Germination and Seedling Growth. Plant and Cell Physiology, 2004, 45, 1485-1499.	3.1	74
18	Isolation of Arabidopsis ahg11, a weak ABA hypersensitive mutant defective in nad4 RNA editing. Journal of Experimental Botany. 2012. 63. 5301-5310.	4.8	61

#	Article	IF	CITATIONS
19	Mutations in the <scp>SLAC</scp> 1 anion channel slow stomatal opening and severely reduce K ⁺ uptake channel activity via enhanced cytosolic [Ca ²⁺] and increased Ca ²⁺ sensitivity of K ⁺ uptake channels. New Phytologist, 2013, 197, 88-98.	7.3	50
20	ABA Hypersensitive Germination2-1 Causes the Activation of Both Abscisic Acid and Salicylic Acid Responses in Arabidopsis. Plant and Cell Physiology, 2009, 50, 2112-2122.	3.1	32
21	A Novel Ethanol-Hypersensitive Mutant of Arabidopsis. Plant and Cell Physiology, 2004, 45, 703-711.	3.1	27
22	Identification of a locus for seed shattering in rice (Oryza sativa L.) by combining bulked segregant analysis with whole-genome sequencing. Molecular Breeding, 2019, 39, 1.	2.1	18
23	A Novel Arabidopsis Gene Required for Ethanol Tolerance is Conserved Among Plants and Archaea. Plant and Cell Physiology, 2004, 45, 659-666.	3.1	13
24	Recognition of N-acetylchitooligosaccharide elicitor by rice protoplasts. Plant Physiology and Biochemistry, 2001, 39, 1105-1110.	5.8	8
25	æ ç ‰©ãf›ãf«ãf¢ãf³ã®å⊷容ãëã, ã,°ãfŠãf«ä¼éëã®æ§‹é€åŸºç›¤Kagaku To Seibutsu, 2011, 49, 161-169.	0.0	0