Igal Ifergan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8591443/publications.pdf

Version: 2024-02-01

257101 288905 5,474 41 24 40 citations h-index g-index papers 51 51 51 8301 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nature Medicine, 2007, 13, 1173-1175.	15.2	1,442
2	The Hedgehog Pathway Promotes Blood-Brain Barrier Integrity and CNS Immune Quiescence. Science, 2011, 334, 1727-1731.	6.0	676
3	Preferential recruitment of interferonâ€Ĵ³â€"expressing T _H 17 cells in multiple sclerosis. Annals of Neurology, 2009, 66, 390-402.	2.8	494
4	Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nature Immunology, 2008, 9, 137-145.	7.0	358
5	Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain, 2003, 126, 2738-2749.	3.7	300
6	Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nature Communications, 2017, 8, 1319.	5.8	237
7	Type 2 Monocyte and Microglia Differentiation Mediated by Glatiramer Acetate Therapy in Patients with Multiple Sclerosis. Journal of Immunology, 2004, 172, 7144-7153.	0.4	187
8	The blood-brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain, 2008, 131, 785-799.	3.7	169
9	Microglial Expression of the B7 Family Member B7 Homolog 1 Confers Strong Immune Inhibition: Implications for Immune Responses and Autoimmunity in the CNS. Journal of Neuroscience, 2005, 25, 2537-2546.	1.7	150
10	Statins reduce human blood-brain barrier permeability and restrict leukocyte migration: Relevance to multiple sclerosis. Annals of Neurology, 2006, 60, 45-55.	2.8	144
11	CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature, 2020, 582, 416-420.	13.7	141
12	Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain, 2012, 135, 2906-2924.	3.7	128
13	Role of ninjurinâ€1 in the migration of myeloid cells to central nervous system inflammatory lesions. Annals of Neurology, 2011, 70, 751-763.	2.8	126
14	Activation of kinin receptor B1 limits encephalitogenic T lymphocyte recruitment to the central nervous system. Nature Medicine, 2009, 15, 788-793.	15.2	118
15	Central nervous system recruitment of effector memory CD8+ T lymphocytes during neuroinflammation is dependent on Â4 integrin. Brain, 2011, 134, 3560-3577.	3.7	112
16	Peripherally derived T regulatory and $\hat{l}^3\hat{l}$ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. Journal of Experimental Medicine, 2018, 215, 1169-1186.	4.2	80
17	Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5059-5064.	3.3	78
18	IFNâ€Î² regulates CD73 and adenosine expression at the blood–brain barrier. European Journal of Immunology, 2008, 38, 2718-2726.	1.6	72

#	Article	IF	Citations
19	B Cell-Derived IL-15 Enhances CD8 T Cell Cytotoxicity and Is Increased in Multiple Sclerosis Patients. Journal of Immunology, 2011, 187, 4119-4128.	0.4	59
20	Experimental Autoimmune Encephalomyelitis in Mice. Methods in Molecular Biology, 2014, 1304, 145-160.	0.4	58
21	Targeting the GM-CSF receptor for the treatment of CNS autoimmunity. Journal of Autoimmunity, 2017, 84, 1-11.	3.0	53
22	Intravenous immune-modifying nanoparticles as a therapy for spinal cord injury in mice. Neurobiology of Disease, 2017, 108, 73-82.	2.1	48
23	Cutting Edge: MicroRNA-223 Regulates Myeloid Dendritic Cell–Driven Th17 Responses in Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2016, 196, 1455-1459.	0.4	45
24	B7-H4 Modulates Regulatory CD4+ T Cell Induction and Function via Ligation of a Semaphorin 3a/Plexin A4/Neuropilin-1 Complex. Journal of Immunology, 2018, 201, 897-907.	0.4	34
25	Intravenous Immunomodulatory Nanoparticle Treatment for Traumatic Brain Injury. Annals of Neurology, 2020, 87, 442-455.	2.8	29
26	ZEB1 promotes pathogenic Th1 and Th17 cell differentiation in multiple sclerosis. Cell Reports, 2021, 36, 109602.	2.9	22
27	Murine Corneal Inflammation and Nerve Damage After Infection With HSV-1 Are Promoted by HVEM and Ameliorated by Immune-Modifying Nanoparticle Therapy. , 2017, 58, 282.		19
28	Allele frequency of three functionally active polymorphisms of the MDR-1 gene in high-risk HIV-negative and HIV-positive Caucasians. Aids, 2002, 16, 2340-2342.	1.0	19
29	Isolation of Human Brain Endothelial Cells and Characterization of Lipid Raft-Associated Proteins by Mass Spectroscopy. Methods in Molecular Biology, 2011, 686, 275-295.	0.4	18
30	Monocytes prime autoreactive T cells after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H116-H123.	1.5	15
31	Potential for Targeting Myeloid Cells in Controlling CNS Inflammation. Frontiers in Immunology, 2020, 11, 571897.	2.2	12
32	PLG nanoparticles target fibroblasts and MARCO+ monocytes to reverse multiorgan fibrosis. JCI Insight, 2022, 7, .	2.3	8
33	Herpesvirus Entry Mediator Binding Partners Mediate Immunopathogenesis of Ocular Herpes Simplex Virus 1 Infection. MBio, $2020,11,.$	1.8	7
34	Tolerance Induced by Antigen-Loaded PLG Nanoparticles Affects the Phenotype and Trafficking of Transgenic CD4+ and CD8+ T Cells. Cells, 2021, 10, 3445.	1.8	4
35	OR.21. MCAM/CD146 is Expressed by Brain Endothelial Cells and Defines a Unique Effector Memory Lymphocyte Subset Involved in Neuroinflammation. Clinical Immunology, 2009, 131, S12.	1.4	2
36	OR.81. Astrocyte-secreted Sonic Hedgehog Supports CNS Anti-inflammatory Activity and Promotes Optimal Human Blood Brain Barrier Functioning. Clinical Immunology, 2009, 131, S34.	1.4	2

#	Article	IF	CITATIONS
37	OR.17. Ninjurin-1 is a Novel Adhesion Molecule of the Blood-brain Barrier Involved in the Recruitment of Monocytes to the Central Nervous System. Clinical Immunology, 2009, 131, S10-S11.	1.4	1
38	Human Blood–brain Barrier-associated DCs Originate from Blood Monocytes and Polarize CD4+Lymphocytes into Th17 or Th1. Clinical Immunology, 2007, 123, S151-S152.	1.4	0
39	Cytotoxic Human IL-22-expressing Th17 Lymphocytes Promote Immune Cell Migration Into the Central Nervous System. Clinical Immunology, 2007, 123, S60.	1.4	O
40	Functional analyses of transmigrated monocyte-derived CD123+ dendritic cells across the inflamed blood–brain barrier endothelium. Journal of Neuroimmunology, 2014, 275, 155.	1.1	0
41	Methodology for in vitro Assessment of Human T Cell Activation and Blockade. Bio-protocol, 2020, 10, e3644.	0.2	0