Liang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8590963/publications.pdf

Version: 2024-02-01

		623734	794594
38	612	14	19
papers	citations	h-index	g-index
39	39	39	679
all docs	docs citations	times ranked	citing authors
uii doco	does citations	tilles falliced	citing additions

#	Article	IF	CITATIONS
1	Phase Shift Techniques for Improving Varactor-Less QVCO Based on Rotated-Phase-Tuning. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 279-283.	3.0	3
2	A 7.2–27.3 GHz CMOS LNA With 3.51 ±0.21 dB Noise Figure Using Multistage Noise Matching Technique. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 74-84.	4.6	21
3	A 22.2-GHz Injection-Locked Frequency Tripler Featuring Dual Injection and 39.4% Locking Range. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 3548-3556.	4.6	2
4	A <scp>30â€GHz</scp> lowâ€power <scp>CMOS LNA</scp> for <scp>5G</scp> communication systems. Microwave and Optical Technology Letters, 2021, 63, 746-752.	1.4	5
5	A 9.8–30.1 GHz CMOS low-noise amplifier with a 3.2-dB noise figure using inductor- and transformer-based gm-boosting techniques. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 586-598.	2.6	3
6	A transformerâ€based injectionâ€locked frequency divider. Microwave and Optical Technology Letters, 2021, 63, 2565-2569.	1.4	0
7	A Wideband CMOS LNA Using Transformer-Based Input Matching and Pole-Tuning Technique. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 3335-3347.	4.6	29
8	A Wideband 7.5-29.5 GHz LNA with Constant NF by Using Multistage Noise Matching at High Frequencies. , 2020, , .		2
9	A 21-41 GHz Compact Wideband Low-Noise Amplifier Based on Transformer-Feedback Technique in 65-nm CMOS., 2020,,.		1
10	A Transformer-based Injection-Locked Frequency Divider in 65-nm CMOS Technology. , 2019, , .		2
11	A V-Band CMOS VCO With Digitally-Controlled Inductor for Frequency Tuning. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 979-983.	3.0	16
12	E-Band Multi-Phase <i>LC</i> Oscillators With Rotated-Phase-Tuning Using Implicit Phase Shifters. IEEE Journal of Solid-State Circuits, 2018, 53, 2560-2571.	5.4	14
13	Design and Analysis of CMOS LNAs with Transformer Feedback for Wideband Input Matching and Noise Cancellation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 1626-1635.	5.4	37
14	A Spur-and-Phase-Noise-Filtering Technique for Inductor-Less Fractional-N Injection-Locked PLLs. IEEE Journal of Solid-State Circuits, 2017, 52, 2128-2140.	5.4	31
15	A 0.9–5.8-GHz Software-Defined Receiver RF Front-End With Transformer-Based Current-Gain Boosting and Harmonic Rejection Calibration. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25, 2371-2382.	3.1	12
16	A 4-Element 60-GHz CMOS Phased-Array Receiver With Beamforming Calibration. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 642-652.	5.4	35
17	A 312-GHz CMOS Injection-Locked Radiator With Chip-and-Package Distributed Antenna. IEEE Journal of Solid-State Circuits, 2017, 52, 2920-2933.	5.4	25
18	Design and Characterization of Active Matrix LED Microdisplays With Embedded Visible Light Communication Transmitter. Journal of Lightwave Technology, 2016, 34, 3449-3457.	4.6	55

#	Article	IF	Citations
19	An inductor-less fractional-N injection-locked PLL with a spur-and-phase-noise filtering technique. , 2016, , .		6
20	A Fully Integrated IEEE 802.15.7 Visible Light Communication Transmitter With On-Chip 8-W 85% Efficiency Boost LED Driver. Journal of Lightwave Technology, 2016, 34, 2419-2430.	4.6	45
21	Recent advancements in visible light communication modulator SoCs. , 2015, , .		1
22	Link budget analysis for visible light communication systems. , 2015, , .		3
23	A fully integrated IEEE 802.15.7 visible light communication transmitter with on-chip 8-W 85% efficiency boost LED driver. , 2015, , .		10
24	An AMLED microdisplay driver SoC with built-in 1.25-Mb/s VLC transmitter. , 2015, , .		5
25	Visible Light Communication System Design and Link Budget Analysis. Journal of Lightwave Technology, 2015, 33, 5201-5209.	4.6	46
26	Design and implementation of IEEE 802.15.7 VLC PHY-I transceiver. , 2014, , .		8
27	Towards indoor localization using Visible Light Communication for consumer electronic devices. , 2014, , .		41
28	A 41-mW 30-Gb/s CMOS optical receiver with digitally-tunable cascaded equalization. , 2014, , .		12
29	A 23-mW 30-Gb/s digitally programmable limiting amplifier for 100GbE optical receivers. , 2014, , .		8
30	A 3-mW 25-Gb/s CMOS transimpedance amplifier with fully integrated low-dropout regulator for 100GbE systems. , 2014, , .		12
31	A 49-to-62 GHz Quadrature VCO With Bimodal Enhanced-Magnetic-Tuning Technique. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61, 3025-3033.	5.4	16
32	A 4-Path 42.8-to-49.5 GHz LO Generation With Automatic Phase Tuning for 60 GHz Phased-Array Receivers. IEEE Journal of Solid-State Circuits, 2013, 48, 2309-2322.	5.4	53
33	Analysis and Design of a 0.6 V 2.2 mW 58.5-to-72.9 GHz Divide-by-4 Injection-Locked Frequency Divider With Harmonic Boosting. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 2001-2008.	5.4	28
34	A 49-to-62GHz CMOS quadrature VCO with bimodal enhanced magnetic tuning., 2012,,.		7
35	A 0.6V 2.2mW 58-to-73GHz divide-by-4 injection-locked frequency divider. , 2012, , .		2
36	A 4-path 42.8-to-49.5GHz LO generation with automatic phase tuning for 60GHz phased-array receivers. , 2012, , .		5

#	Article	IF	CITATIONS
37	A 24-GHz and 60-GHz dual-band standing-wave VCO in 0.13µm CMOS process. , 2010, , .		11
38	A 5.91–8.94GHz phaseâ€locked loop in 65 nm CMOS for 5G applications. Microwave and Optical Technology Letters, 0, , .	1.4	0