
Liang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/858945/publications.pdf Version: 2024-02-01

LIANC HUANC

#	Article	IF	CITATIONS
1	High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon, 2015, 81, 826-834.	10.3	443
2	Highâ€Performance NO ₂ Sensors Based on Chemically Modified Graphene. Advanced Materials, 2013, 25, 766-771.	21.0	404
3	Highly Compressible Macroporous Graphene Monoliths via an Improved Hydrothermal Process. Advanced Materials, 2014, 26, 4789-4793.	21.0	354
4	Reduced Graphene Oxide Membranes for Ultrafast Organic Solvent Nanofiltration. Advanced Materials, 2016, 28, 8669-8674.	21.0	349
5	Graphene-Based Membranes for Molecular Separation. Journal of Physical Chemistry Letters, 2015, 6, 2806-2815.	4.6	316
6	Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups. Chemical Science, 2016, 7, 1874-1881.	7.4	251
7	Baseâ€Induced Liquid Crystals of Graphene Oxide for Preparing Elastic Graphene Foams with Longâ€Range Ordered Microstructures. Advanced Materials, 2016, 28, 1623-1629.	21.0	193
8	Graphene Oxide Membranes with Tunable Semipermeability in Organic Solvents. Advanced Materials, 2015, 27, 3797-3802.	21.0	192
9	Ultratough, Ultrastrong, and Highly Conductive Graphene Films with Arbitrary Sizes. Advanced Materials, 2014, 26, 7588-7592.	21.0	182
10	Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels. Nanoscale, 2013, 5, 3780.	5.6	160
11	Multifunctional Pristine Chemically Modified Graphene Films as Strong as Stainless Steel. Advanced Materials, 2015, 27, 6708-6713.	21.0	157
12	Ultrasensitive and Selective Nitrogen Dioxide Sensor Based on Self-Assembled Graphene/Polymer Composite Nanofibers. ACS Applied Materials & Interfaces, 2014, 6, 17003-17008.	8.0	153
13	Size Fractionation of Graphene Oxide Sheets via Filtration through Trackâ€Etched Membranes. Advanced Materials, 2015, 27, 3654-3660.	21.0	149
14	High-Quality Graphene Ribbons Prepared from Graphene Oxide Hydrogels and Their Application for Strain Sensors. ACS Nano, 2015, 9, 12320-12326.	14.6	148
15	An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering. Energy and Environmental Science, 2016, 9, 2005-2010.	30.8	142
16	Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors. Journal of Materials Chemistry A, 2014, 2, 17489-17494.	10.3	138
17	Grapheneâ€Based Nanomaterials for Flexible and Wearable Supercapacitors. Small, 2018, 14, e1800879.	10.0	107
18	Rightsizing Nanochannels in Reduced Graphene Oxide Membranes by Solvating for Dye Desalination. Environmental Science & Technology, 2018, 52, 12649-12655.	10.0	85

LIANG HUANG

#	Article	IF	CITATIONS
19	High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. Journal of Materials Chemistry A, 2014, 2, 968-974.	10.3	79
20	Synthesis of graphene oxide sheets with controlled sizes from sieved graphite flakes. Carbon, 2016, 110, 34-40.	10.3	77
21	Highly permeable mixed matrix materials comprising ZIF-8 nanoparticles in rubbery amorphous poly(ethylene oxide) for CO2 capture. Separation and Purification Technology, 2018, 205, 58-65.	7.9	67
22	Reduced Holey Graphene Oxide Membranes for Desalination with Improved Water Permeance. ACS Applied Materials & Interfaces, 2020, 12, 1387-1394.	8.0	64
23	Unexpectedly Strong Size-Sieving Ability in Carbonized Polybenzimidazole for Membrane H ₂ /CO ₂ Separation. ACS Applied Materials & Interfaces, 2019, 11, 47365-47372.	8.0	63
24	Graphene membranes with tuneable nanochannels by intercalating self-assembled porphyrin molecules for organic solvent nanofiltration. Carbon, 2017, 124, 263-270.	10.3	46
25	Thermally stable, homogeneous blends of cross-linked poly(ethylene oxide) and crown ethers with enhanced CO2 permeability. Journal of Membrane Science, 2020, 610, 118253.	8.2	33
26	Facilely Cross-Linking Polybenzimidazole with Polycarboxylic Acids to Improve H ₂ /CO ₂ Separation Performance. ACS Applied Materials & Interfaces, 2021, 13, 12521-12530.	8.0	29
27	Scalable Polymeric Few-Nanometer Organosilica Membranes with Hydrothermal Stability for Selective Hydrogen Separation. ACS Nano, 2021, 15, 12119-12128.	14.6	28
28	High-yield production of highly conductive graphene via reversible covalent chemistry. Chemical Communications, 2015, 51, 2806-2809.	4.1	25
29	Interpenetrating networks of mixed matrix materials comprising metal-organic polyhedra for membrane CO2 capture. Journal of Membrane Science, 2020, 606, 118122.	8.2	22
30	Engineering Sub-Nanometer Channels in Two-Dimensional Materials for Membrane Gas Separation. Membranes, 2018, 8, 100.	3.0	21
31	Designing organic solvent separation membranes: polymers, porous structures, 2D materials, and their combinations. Materials Advances, 2021, 2, 4574-4603.	5.4	21
32	Etching and acidifying graphene oxide membranes to increase gas permeance while retaining molecular sieving ability. AICHE Journal, 2020, 66, e17022.	3.6	19
33	Thin-film composite membranes based on hyperbranched poly(ethylene oxide) for CO2/N2 separation. Journal of Membrane Science, 2022, 644, 120184.	8.2	17
34	Aggregationâ€Induced Emission for Highly Selective and Sensitive Fluorescent Biosensing and Cell Imaging. Journal of Polymer Science Part A, 2017, 55, 653-659.	2.3	16
35	Facile one-pot synthesis of PdM (M = Ag, Ni, Cu, Y) nanowires for use in mixed matrix membranes for efficient hydrogen separation. Journal of Materials Chemistry A, 2021, 9, 12755-12762.	10.3	16
36	"Pottery―of Porous Graphene Materials. Advanced Electronic Materials, 2015, 1, 1500004.	5.1	15

LIANG HUANG

#	Article	IF	CITATIONS
37	Onâ€Chip Microsupercapacitors Based on Coordination Polymer Frameworks for Alternating Current Lineâ€Filtering. Angewandte Chemie - International Edition, 2017, 56, 6381-6383.	13.8	15
38	3D Vertically Aligned CNT/Graphene Hybrids from Layerâ€by‣ayer Transfer for Supercapacitors. Particle and Particle Systems Characterization, 2017, 34, 1700131.	2.3	15
39	Superior CO2/N2 separation performance of highly branched Poly(1,3 dioxolane) plasticized by polyethylene glycol. Journal of Membrane Science, 2022, 648, 120352.	8.2	14
40	Engineering hierarchical nanochannels in graphene oxide membranes by etching and polydopamine intercalation for highly efficient dye recovery. Chemical Engineering Journal, 2022, 433, 133593.	12.7	11
41	Effect of Branch Length on the Structural and Separation Properties of Hyperbranched Poly(1,3-dioxolane). Macromolecules, 2022, 55, 382-389.	4.8	7
42	On-Chip-Mikrosuperkondensatoren aus Koordinationspolymeren zur Wechselstromnetzfilterung. Angewandte Chemie, 2017, 129, 6479-6481.	2.0	0
43	Reduced Holey Graphene Oxide Membranes for Desalination with Improved Water Permeance. Journal of Membrane Science, 2019, 12, .	8.2	Ο