Neal Skipper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8589040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intermediate Range Order in Metal–Ammonia Solutions: Pure and Na-Doped Ca-NH ₃ . Journal of Physical Chemistry B, 2021, 125, 7456-7461.	2.6	1
2	High-Performance Zinc–Air Batteries with Scalable Metal–Organic Frameworks and Platinum Carbon Black Bifunctional Catalysts. ACS Applied Materials & Interfaces, 2020, 12, 42696-42703.	8.0	41
3	Nanoporous Carbons: Superior Multifunctional Activity of Nanoporous Carbons with Widely Tunable Porosity: Enhanced Storage Capacities for Carbonâ€Đioxide, Hydrogen, Water, and Electric Charge (Adv.) Tj ETQ	q11 9.0. 78	4314 rgBT /
4	Superior Multifunctional Activity of Nanoporous Carbons with Widely Tunable Porosity: Enhanced Storage Capacities for Carbonâ€Đioxide, Hydrogen, Water, and Electric Charge. Advanced Energy Materials, 2020, 10, 1903649.	19.5	41
5	The liquid structure of the solvents dimethylformamide (DMF) and dimethylacetamide (DMA). Molecular Physics, 2019, 117, 3353-3363.	1.7	19
6	Sizeâ€Related Electrochemical Performance in Active Carbon Nanostructures: A MOFsâ€Derived Carbons Case Study. Advanced Science, 2019, 6, 1901517.	11.2	34
7	Sizeâ€Effects: Sizeâ€Related Electrochemical Performance in Active Carbon Nanostructures: A MOFsâ€Derived Carbons Case Study (Adv. Sci. 20/2019). Advanced Science, 2019, 6, 1970123.	11.2	1
8	A novel ammonium pentaborate – poly(ethylene-glycol) templated polymer-inclusion compound. Chemical Communications, 2019, 55, 8290-8292.	4.1	5
9	Solvation of Na [–] in the Sodide Solution, LiNa·10MeNH ₂ . Journal of Physical Chemistry B, 2019, 123, 5337-5342.	2.6	1
10	Production of phosphorene nanoribbons. Nature, 2019, 568, 216-220.	27.8	208
11	Dihydrogen vs. hydrogen bonding in the solvation of ammonia borane by tetrahydrofuran and liquid ammonia. Physical Chemistry Chemical Physics, 2018, 20, 12200-12209.	2.8	11
12	Formation of Methane Hydrate in the Presence of Natural and Synthetic Nanoparticles. Journal of the American Chemical Society, 2018, 140, 3277-3284.	13.7	73
13	The structures of liquid pyridine and naphthalene: the effects of heteroatoms and core size on aromatic interactions. Physical Chemistry Chemical Physics, 2018, 20, 2704-2715.	2.8	20
14	Understanding the behaviour of graphene oxide in Portland cement paste. Cement and Concrete Research, 2018, 111, 169-182.	11.0	112
15	Crystalline structure of an ammonia borane–polyethylene oxide cocrystal: a material investigated for its hydrogen storage potential. CrystEngComm, 2018, 20, 4436-4440.	2.6	10
16	Local Structure and Polar Order in Liquid <i>N</i> -Methyl-2-pyrrolidone (NMP). Journal of Physical Chemistry B, 2018, 122, 8963-8971.	2.6	27
17	Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chemical Reviews, 2018, 118, 7363-7408.	47.7	182
18	Electron Solvation and the Unique Liquid Structure of a Mixedâ€Amine Expanded Metal: The Saturated Li–NH ₃ –MeNH ₂ System. Angewandte Chemie - International Edition, 2017, 56, 1561-1565.	13.8	17

#	Article	IF	CITATIONS
19	Chemical routes to discharging graphenides. Nanoscale, 2017, 9, 3150-3158.	5.6	17
20	An investigation into the colloidal stability of graphene oxide nano-layers in alite paste. Cement and Concrete Research, 2017, 99, 116-128.	11.0	80
21	Electron Solvation and the Unique Liquid Structure of a Mixedâ€Amine Expanded Metal: The Saturated Li–NH ₃ –MeNH ₂ System. Angewandte Chemie, 2017, 129, 1583-1587.	2.0	1
22	Trajectory of the Selective Dissolution of Charged Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2017, 121, 21703-21712.	3.1	9
23	Switchable changes in the conductance of single-walled carbon nanotube networks on exposure to water vapour. Nanoscale, 2017, 9, 11279-11287.	5.6	6
24	Design of hyperporous graphene networks and their application in solid-amine based carbon capture systems. Journal of Materials Chemistry A, 2017, 5, 17833-17840.	10.3	48
25	Ionic solutions of two-dimensional materials. Nature Chemistry, 2017, 9, 244-249.	13.6	68
26	Controlling the Cross-Sensitivity of Carbon Nanotube-Based Gas Sensors to Water Using Zeolites. ACS Applied Materials & Interfaces, 2016, 8, 28096-28104.	8.0	25
27	Opening the terahertz window on the OSIRIS spectrometer. EPJ Web of Conferences, 2015, 83, 03003.	0.3	19
28	Questioning Antiferromagnetic Ordering in the Expanded Metal, Li(NH ₃) ₄ : A Lack of Evidence from μSR. Journal of Physical Chemistry Letters, 2015, 6, 3966-3970.	4.6	1
29	Probing the charging mechanisms of carbon nanomaterial polyelectrolytes. Faraday Discussions, 2014, 172, 311-325.	3.2	25
30	Structure and Dynamics of Molecular Hydrogen in the Interlayer Pores of a Swelling 2:1 Clay by Neutron Scattering. Journal of Physical Chemistry C, 2014, 118, 25740-25747.	3.1	14
31	Single-walled carbon nanotube composite inks for printed gas sensors: enhanced detection of NO ₂ , NH ₃ , EtOH and acetone. RSC Advances, 2014, 4, 51395-51403.	3.6	40
32	Electrochemical Processing of Discrete Single-Walled Carbon Nanotube Anions. ACS Nano, 2013, 7, 1769-1778.	14.6	29
33	Scalable Method for the Reductive Dissolution, Purification, and Separation of Single-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 54-62.	14.6	81
34	Structure and Morphology of Charged Graphene Platelets in Solution by Small-Angle Neutron Scattering. Journal of the American Chemical Society, 2012, 134, 8302-8305.	13.7	60
35	Chiral interactions of histidine in a hydrated vermiculite clay. Physical Chemistry Chemical Physics, 2011, 13, 825-830.	2.8	20
36	Probing the binding and spatial arrangement of molecular hydrogen in porous hosts via neutron Compton scattering. Faraday Discussions, 2011, 151, 171.	3.2	30

#	Article	IF	CITATIONS
37	Activation and local structural stability during the thermal decomposition of Mg/Al-hydrotalcite by total neutron scattering. Journal of Materials Chemistry, 2011, 21, 15479.	6.7	22
38	Ca-intercalated graphite as a hydrogen storage material: Stability against decomposition into CaH2 and graphite. Journal of Solid State Chemistry, 2011, 184, 1561-1565.	2.9	5
39	Structure of Ï€â^'Ï€ Interactions in Aromatic Liquids. Journal of the American Chemical Society, 2010, 132, 5735-5742.	13.7	177
40	Turbostratic graphite nanofibres from electrospun solutions of PAN in dimethylsulphoxide. European Polymer Journal, 2010, 46, 1194-1202.	5.4	35
41	Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon, 2010, 48, 630-635.	10.3	415
42	Magnetic behaviour in Dy1 â^'xMmxCo2compounds. Journal of Physics Condensed Matter, 2010, 22, 436001.	1.8	0
43	Structure and phase stability of hydrogenated first-stage alkali- and alkaline-earth metal–graphite intercalation compounds. Synthetic Metals, 2010, 160, 1631-1635.	3.9	7
44	A Solution Selection Model for Coaxial Electrospinning and Its Application to Nanostructured Hydrogen Storage Materials. Journal of Physical Chemistry C, 2010, 114, 21201-21213.	3.1	66
45	Ammonia absorption in calcium graphite intercalation compound: in situ neutron diffraction, Raman spectroscopy and magnetization. Physical Chemistry Chemical Physics, 2010, 12, 6253.	2.8	6
46	The Ammonia-Driven Phase Transition in Bulk and Nanostructured Potassium Graphite KC ₂₄ . Materials Research Society Symposia Proceedings, 2009, 1216, 1.	0.1	0
47	High temperature hydrogenation of CaC6. Physica C: Superconductivity and Its Applications, 2009, 469, 2000-2002.	1.2	3
48	Evidence for Asphaltene Nanoaggregation in Toluene and Heptane from Molecular Dynamics Simulations. Energy & Fuels, 2009, 23, 1220-1229.	5.1	193
49	Computer Simulations of Fulleride Anions in Metal-Ammonia Solutions. Journal of Physical Chemistry B, 2009, 113, 3324-3332.	2.6	15
50	Effect of hydrogenation on structure and superconducting properties of CaC6. Journal of Materials Chemistry, 2009, 19, 5239.	6.7	20
51	Neutron scattering gets short-changed. Physics World, 2009, 22, 15-15.	0.0	0
52	Pollutant Speciation in Water and Related Environmental Treatment Issues. Neutron Scattering Applications and Techniques, 2009, , 491-520.	0.2	0
53	Quantum Delocalization of Molecular Hydrogen in Alkali-Graphite Intercalates. Physical Review Letters, 2008, 101, 126101.	7.8	32
54	The Three-Dimensional Structure of Water Confined in Nanoporous Vycor Glass. Journal of Physical Chemistry B, 2007, 111, 5610-5620.	2.6	72

#	Article	IF	CITATIONS
55	A high-resolution neutron scattering study of the hydrogen-driven metal-insulator phase transition in KC8Hx. Journal of Alloys and Compounds, 2007, 446-447, 397-401.	5.5	3
56	Hydration of Hg2+ in Aqueous Solution Studied by Neutron Diffraction with Isotopic Substitution. Journal of Physical Chemistry A, 2007, 111, 5123-5125.	2.5	24
57	The Solvation Structure of Fulleride C605-Anions in Potassium Ammonia Solution. Journal of Physical Chemistry C, 2007, 111, 5640-5647.	3.1	17
58	Computer simulation of the structure and dynamics of phenol in sodium montmorillonite hydrates. European Journal of Soil Science, 2007, 58, 958-966.	3.9	22
59	The structure and dynamics of 2-dimensional fluids in swelling clays. Chemical Geology, 2006, 230, 182-196.	3.3	108
60	Superconductivity at elevated temperatures in and. Physica B: Condensed Matter, 2006, 378-380, 636-639.	2.7	4
61	Positive pressure dependence of the superconducting transition temperature in. Physica B: Condensed Matter, 2006, 378-380, 892-893.	2.7	2
62	Neutron scattering studies of hydrogen in potassium–graphite intercalates: Towards tunable graphite intercalates for hydrogen storage. Physica B: Condensed Matter, 2006, 385-386, 163-165.	2.7	6
63	Pressure dependence of the superconducting transition temperature inC6YbandC6Ca. Physical Review B, 2006, 74, .	3.2	30
64	Proton dynamics in lithium-ammonia solutions and expanded metals. Journal of Chemical Physics, 2006, 124, 024501.	3.0	10
65	Monte Carlo and molecular dynamics simulations of methane in potassium montmorillonite clay hydrates at elevated pressures and temperatures. Journal of Colloid and Interface Science, 2005, 282, 422-427.	9.4	48
66	Superconductivity in the intercalated graphite compounds C6Yb and C6Ca. Nature Physics, 2005, 1, 39-41.	16.7	633
67	The structure of polaronic electron cavities in lithium–ammonia solutions. Journal of Physics Condensed Matter, 2004, 16, 5639-5652.	1.8	29
68	The structure of calcium–ammonia solutions by neutron diffraction. Journal of Chemical Physics, 2004, 121, 996-1004.	3.0	15
69	Formation of Giant Solvation Shells around Fulleride Anions in Liquid Ammonia. Journal of the American Chemical Society, 2004, 126, 13228-13229.	13.7	27
70	Molecular Modelling of Pore Fluids in Clays. , 2004, , 301-332.		0
71	Liquidâ ''Liquid Phase Separation and Microscopic Structure in Rubidiumâ ''Ammonia Solutions Observed Using X-ray Absorption Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 14452-14456.	2.6	11
72	Structural Studies of Ammonia and Metallic Lithiumâ^'Ammonia Solutions. Journal of the American Chemical Society, 2003, 125, 2572-2581.	13.7	68

#	Article	IF	CITATIONS
73	The structure of lithium–ammonia and sodium–ammonia solutions by neutron diffraction. Journal of Chemical Physics, 2003, 118, 7486.	3.0	24
74	Structure of Solutions of Lithium in Methylamine across the Metalâ^'Nonmetal Transition. Journal of Physical Chemistry B, 2002, 106, 11-14.	2.6	49
75	X-ray diffraction studies of solutions of lithium in ammonia: The structure of the metal–nonmetal transition. Journal of Chemical Physics, 2002, 116, 2991-2996.	3.0	30
76	Neutron diffraction study of the structure of saturated sodium-ammonia solutions. Journal of Molecular Liquids, 2002, 96-97, 341-352.	4.9	8
77	Atomistic computer simulation of the clay–fluid interface in colloidal laponite. Journal of Chemical Physics, 2001, 114, 3727-3733.	3.0	60
78	Molecular dynamics simulation of methane in sodium montmorillonite clay hydrates at elevated pressures and temperatures. Molecular Physics, 2001, 99, 899-906.	1.7	47
79	The structure of liquid methylamine and solutions of lithium in methylamine. Molecular Physics, 2001, 99, 779-786.	1.7	8
80	Time-of-flight neutron diffraction studies of clay-fluid interactions under basin conditions. Clay Minerals, 2000, 35, 283-290.	0.6	27
81	Computer simulation of the structure and dynamics of methane in hydrated Na-smectite clay. Chemical Physics Letters, 2000, 329, 23-28.	2.6	47
82	Structure of a metallic solution of lithium in ammonia. Physical Review B, 2000, 61, 11993-11997.	3.2	22
83	The structure of saturated lithium– and potassium–ammonia solutions as studied by using neutron diffraction. Journal of Chemical Physics, 2000, 112, 7147-7151.	3.0	43
84	Neutron Diffraction Studies of Graphiteâ^'Potassiumâ^'Methylamine:Â Staging Transitions and Structure of New Graphite Intercalation Compounds. Journal of Physical Chemistry B, 2000, 104, 10969-10972.	2.6	7
85	The structure of pore fluids in swelling clays at elevated pressures and temperatures. Journal of Physics Condensed Matter, 1999, 11, 9179-9188.	1.8	34
86	Surface geochemistry of the clay minerals. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3358-3364.	7.1	641
87	The interlayer structure of a graphite–potassium–ammonia intercalation compound by neutron diffraction. Chemical Physics Letters, 1999, 300, 444-450.	2.6	11
88	Interlayer Molecular Structure and Dynamics in Li-, Na-, and K-Montmorillonite-Water Systems. ACS Symposium Series, 1999, , 88-106.	0.5	7
89	The Structure of Interlayer Water in Liâ ^{~,} Montmorillonite Studied by Neutron Diffraction with Isotopic Substitution. Journal of Physical Chemistry B, 1998, 102, 10899-10905.	2.6	42
90	High-Resolution Structural Study of an Electrical Double Layer by Neutron Diffraction. Journal of Physical Chemistry B, 1998, 102, 8945-8949.	2.6	37

#	Article	IF	CITATIONS
91	Monte Carlo and Molecular Dynamics Simulations of Electrical Double-Layer Structure in Potassiumâ`'Montmorillonite Hydrates. Langmuir, 1998, 14, 1201-1207.	3.5	129
92	Computer simulation of aqueous pore fluids in 2:1 clay minerals. Mineralogical Magazine, 1998, 62, 657-667.	1.4	32
93	A Monte Carlo study of water at an uncharged clay surface. Journal of Physics Condensed Matter, 1997, 9, 4081-4087.	1.8	40
94	The aggregation of methane in aqueous solution. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 2263-2267.	1.7	36
95	Monte Carlo and Molecular Dynamics Simulations of Interfacial Structure in Lithium-Montmorillonite Hydrates. Langmuir, 1997, 13, 2074-2082.	3.5	139
96	Isotope substitution of interfacial fluids in vermiculite clays. Physica B: Condensed Matter, 1997, 234-236, 375-376.	2.7	3
97	Structure of alkyl ammonium solutions in vermiculite clays. Faraday Discussions, 1996, 104, 295.	3.2	12
98	Computer simulation studies of the hydration and aggregation of simple hydrophobic molecules. Faraday Discussions, 1996, 103, 141.	3.2	32
99	Temperature dependence of solvent structure around a hydrophobic solute: a Monte Carlo study of methane in water. Chemical Physics Letters, 1996, 253, 209-215.	2.6	22
100	Computer Simulation of Interlayer Molecular Structure in Sodium Montmorillonite Hydrates. Langmuir, 1995, 11, 2734-2741.	3.5	292
101	Monte Carlo Simulation of Interlayer Molecular Structure in Swelling Clay Minerals. 1. Methodology. Clays and Clay Minerals, 1995, 43, 285-293.	1.3	310
102	Monte Carlo Simulation of Interlayer Molecular Structure in Swelling Clay Minerals. 2. Monolayer Hydrates. Clays and Clay Minerals, 1995, 43, 294-303.	1.3	228
103	Direct Measurement of the Electric Double-Layer Structure in Hydrated Lithium Vermiculite Clays by Neutron Diffraction. The Journal of Physical Chemistry, 1995, 99, 14201-14204.	2.9	65
104	Molecular Modeling of Clay Hydration: A Study of Hysteresis Loops in the Swelling Curves of Sodium Montmorillonites. Langmuir, 1995, 11, 4629-4631.	3.5	188
105	Monte Carlo Molecular Modeling Studies of Hydrated Li-, Na-, and K-Smectites: Understanding the Role of Potassium as a Clay Swelling Inhibitor. Journal of the American Chemical Society, 1995, 117, 12608-12617.	13.7	457
106	Neutron diffraction study of calcium vermiculite: hydration of calcium ions in a confined environment. The Journal of Physical Chemistry, 1994, 98, 942-945.	2.9	51
107	Computer simulation of methane—water solutions. Evidence for a temperature-dependent hydrophobic attraction. Chemical Physics Letters, 1993, 207, 424-429.	2.6	72
108	Computer simulation of interlayer water in 2:1 clays. Journal of Chemical Physics, 1991, 94, 7434-7445.	3.0	211

#	Article	IF	CITATIONS
109	The structure of interlayer water in vermiculite. Journal of Chemical Physics, 1991, 94, 5751-5760.	3.0	126
110	An X-ray diffraction study of Ni(aq)2+and Mg(aq)2+by difference methods. Journal of Physics Condensed Matter, 1989, 1, 3489-3506.	1.8	38
111	X-ray and neutron diffraction studies on concentrated aqueous solutions of sodium nitrate and silver nitrate. Journal of Physics Condensed Matter, 1989, 1, 4141-4154.	1.8	118
112	Computer Calculation of Water-Clay Interactions Using Atomic Pair Potentials. Clay Minerals, 1989, 24, 411-425.	0.6	61
113	Diffraction and the study of aqua ions. The Journal of Physical Chemistry, 1987, 91, 5851-5858.	2.9	130
114	Ionic structure in aqueous electrolyte solution by the difference method of X-ray diffraction. Nature, 1986, 321, 52-53.	27.8	23
115	K+ coordination in aqueous solution. Chemical Physics Letters, 1985, 114, 35-38.	2.6	88