Véronique Orian-Rousseau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8588858/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes and Development, 2002, 16, 3074-3086.	5.9	445
2	CD44, a therapeutic target for metastasising tumours. European Journal of Cancer, 2010, 46, 1271-1277.	2.8	423
3	A guide to the composition and functions of the extracellular matrix. FEBS Journal, 2021, 288, 6850-6912.	4.7	320
4	CD44: More than a mere stem cell marker. International Journal of Biochemistry and Cell Biology, 2016, 81, 166-173.	2.8	186
5	Hepatocyte Growth Factor-induced Ras Activation Requires ERM Proteins Linked to Both CD44v6 and F-Actin. Molecular Biology of the Cell, 2007, 18, 76-83.	2.1	172
6	CD44 Acts Both as a Growth―and Invasivenessâ€Promoting Molecule and as a Tumorâ€Suppressing Cofactor. Annals of the New York Academy of Sciences, 2000, 910, 106-120.	3.8	141
7	A CD44v6 peptide reveals a role of CD44 in VEGFR-2 signaling and angiogenesis. Blood, 2009, 114, 5236-5244.	1.4	140
8	CD44 Plays a Functional Role in Helicobacter pylori-induced Epithelial Cell Proliferation. PLoS Pathogens, 2015, 11, e1004663.	4.7	138
9	CD44 functions in Wnt signaling by regulating LRP6 localization and activation. Cell Death and Differentiation, 2015, 22, 677-689.	11.2	127
10	CD44 Acts as a Signaling Platform Controlling Tumor Progression and Metastasis. Frontiers in Immunology, 2015, 6, 154.	4.8	114
11	Differential expression of laminin isoforms and α6-β4 integrin subunits in the developing human and mouse intestine. Developmental Dynamics, 1994, 201, 71-85.	1.8	108
12	CD44 is a Multidomain Signaling Platform that Integrates Extracellular Matrix Cues with Growth Factor and Cytokine Signals. Advances in Cancer Research, 2014, 123, 231-254.	5.0	96
13	Perspectives of CD44 targeting therapies. Archives of Toxicology, 2015, 89, 3-14.	4.2	92
14	Opposing effects of high- and low-molecular weight hyaluronan on CXCL12-induced CXCR4 signaling depend on CD44. Cell Death and Disease, 2013, 4, e819-e819.	6.3	79
15	Inhibition of Tumor Growth and Metastasis in Pancreatic Cancer Models by Interference With CD44v6 Signaling. Gastroenterology, 2016, 150, 513-525.e10.	1.3	78
16	The Laminins: Role in Intestinal Morphogenesis and Differentiation. Annals of the New York Academy of Sciences, 1998, 859, 46-64.	3.8	73
17	Chapter 4 Adhesion Proteins Meet Receptors. Advances in Cancer Research, 2008, 101, 63-92.	5.0	62
18	A Five-Amino-Acid Peptide Blocks Met- and Ron-Dependent Cell Migration. Cancer Research, 2005, 65, 6105-6110.	0.9	61

#	Article	IF	CITATIONS
19	A novel ZEB1/HAS2 positive feedback loop promotes EMT in breast cancer. Oncotarget, 2017, 8, 11530-11543.	1.8	59
20	Developmental expression of laminin-5 and HD1 in the intestine: Epithelial to mesenchymal shift for the laminin γ2 chain subunit deposition. , 1996, 206, 12-23.		56
21	The surface proteins InIA and InIB are interdependently required for polar basolateral invasion by Listeria monocytogenes in a human model of the blood–cerebrospinal fluid barrier. Microbes and Infection, 2013, 15, 291-301.	1.9	56
22	Haploinsufficiency of c-Met in <i>cd44</i> ^{â^'/â^'} Mice Identifies a Collaboration of CD44 and c-Met In Vivo. Molecular and Cellular Biology, 2007, 27, 8797-8806.	2.3	49
23	c-Met recruits ICAM-1 as a coreceptor to compensate for the loss of CD44 in <i>Cd44</i> null mice. Molecular Biology of the Cell, 2011, 22, 2777-2786.	2.1	44
24	Aromatic amino acids at the surface of InlB are essential for host cell invasion by Listeria monocytogenes. Molecular Microbiology, 2003, 48, 1525-1536.	2.5	43
25	Aberrant mural cell recruitment to lymphatic vessels and impaired lymphatic drainage in a murine model of pulmonary fibrosis. Blood, 2012, 119, 5931-5942.	1.4	38
26	Internalization of Met Requires the Co-Receptor CD44v6 and Its Link to ERM Proteins. PLoS ONE, 2013, 8, e62357.	2.5	36
27	Epidermal-specific deletion of CD44 reveals a function in keratinocytes in response to mechanical stress. Cell Death and Disease, 2016, 7, e2461-e2461.	6.3	35
28	Differential recruitment of CD44 isoforms by ErbB ligands reveals an involvement of CD44 in breast cancer. Oncogene, 2018, 37, 1472-1484.	5.9	33
29	CD44 loss of function sensitizes AML cells to the BCL-2 inhibitor venetoclax by decreasing CXCL12-driven survival cues. Blood, 2021, 138, 1067-1080.	1.4	29
30	Regulation of <i>Staphylococcus aureus</i> Infection of Macrophages by CD44, Reactive Oxygen Species, and Acid Sphingomyelinase. Antioxidants and Redox Signaling, 2018, 28, 916-934.	5.4	28
31	TGFβ counteracts LYVE-1-mediated induction of lymphangiogenesis by small hyaluronan oligosaccharides. Journal of Molecular Medicine, 2018, 96, 199-209.	3.9	23
32	Involvement of CD44v6 in InlBâ€dependent <i>Listeria</i> invasion. Molecular Microbiology, 2009, 72, 1196-1207.	2.5	22
33	CD44 engagement enhances acute myeloid leukemia cell adhesion to the bone marrow microenvironment by increasing VLA-4 avidity. Haematologica, 2021, 106, 2102-2113.	3.5	22
34	Involvement of activator protein 1 complexes in the epithelium-specific activation of the laminin γ2-chain gene promoter by hepatocyte growth factor (scatter factor). Biochemical Journal, 2000, 347, 407.	3.7	20
35	Paracrine Met signaling triggers epithelial–mesenchymal transition in mammary luminal progenitors, affecting their fate. ELife, 2015, 4, .	6.0	19
36	Microenvironment-induced CD44v6 promotes early disease progression in chronic lymphocytic leukemia. Blood, 2018, 131, 1337-1349.	1.4	18

#	Article	IF	CITATIONS
37	Live cell imaging shows hepatocyte growth factor-induced Met dimerization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1552-1558.	4.1	17
38	Direct binding of hepatocyte growth factor and vascular endothelial growth factor to CD44v6. Bioscience Reports, 2015, 35, .	2.4	16
39	CD44 regulates Wnt signaling at the level of LRP6. Molecular and Cellular Oncology, 2015, 2, e995046.	0.7	12
40	CD44v6â€Peptide Functionalized Nanoparticles Selectively Bind to Metastatic Cancer Cells. Advanced Science, 2017, 4, 1600202.	11.2	12
41	CD44 mediates the catch-bond activated rolling of HEPG2Iso epithelial cancer cells on hyaluronan. Cell Adhesion and Migration, 2017, 11, 476-487.	2.7	12
42	Functional Genomic mRNA Profiling of Colorectal Adenomas: Identification and <i>in vivo</i> Validation of CD44 and Splice Variant CD44v6 as Molecular Imaging Targets. Theranostics, 2017, 7, 482-492.	10.0	10
43	Plasticity in Colorectal Cancer: Why Cancer Cells Differentiate. Cancers, 2021, 13, 918.	3.7	9
44	Genes upregulated in a metastasizing human colon carcinoma cell line. International Journal of Cancer, 2005, 113, 699-705.	5.1	7
45	Direct interaction of TrkA/CD44v3 is essential for NGF-promoted aggressiveness of breast cancer cells. Journal of Experimental and Clinical Cancer Research, 2022, 41, 110.	8.6	7
46	Endocytosis of Fgf8 Is a Double-Stage Process and Regulates Spreading and Signaling. PLoS ONE, 2014, 9, e86373.	2.5	6
47	Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loop. Cell Death and Disease, 2022, 13, 168.	6.3	6
48	Breast Cancer-Derived Microparticles Reduce Cancer Cell Adhesion, an Effect Augmented by Chemotherapy. Cells, 2020, 9, 2269.	4.1	5
49	Peptides Derived from Exon v6 of the CD44 Extracellular Domain Prevent Activation of Receptor Tyrosine Kinase and Subsequently Angiogenesis and Metastatic Spread of Tumor Cells. , 0, , 35-55.		1