Ernesto Igartua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8588004/publications.pdf Version: 2024-02-01

Version, 2024-02-01

#	Article	IF	CITATIONS
1	Hybrids Provide More Options for Fine-Tuning Flowering Time Responses of Winter Barley. Frontiers in Plant Science, 2022, 13, 827701.	3.6	1
2	Candidate genes underlying QTL for flowering time and their interactions in a wide spring barley (Hordeum vulgare L.) cross. Crop Journal, 2021, 9, 862-872.	5.2	6
3	Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. Theoretical and Applied Genetics, 2021, 134, 1867-1897.	3.6	41
4	Genomic Prediction of Grain Yield in a Barley MAGIC Population Modeling Genotype per Environment Interaction. Frontiers in Plant Science, 2021, 12, 664148.	3.6	5
5	Field responses of barley genotypes across a salinity gradient in an arid Mediterranean environment. Agricultural Water Management, 2021, 258, 107206.	5.6	18
6	Responses of Barley to High Ambient Temperature Are Modulated by Vernalization. Frontiers in Plant Science, 2021, 12, 776982.	3.6	10
7	Root Trait Diversity in Field Grown Durum Wheat and Comparison with Seedlings. Agronomy, 2021, 11, 2545.	3.0	6
8	Rachis brittleness in a hybrid–parent barley (Hordeum vulgare) breeding germplasm with different combinations at the nonâ€brittle rachis genes. Plant Breeding, 2020, 139, 317-327.	1.9	3
9	TB1: from domestication gene to tool for many trades. Journal of Experimental Botany, 2020, 71, 4621-4624.	4.8	9
10	Perspectives on Low Temperature Tolerance and Vernalization Sensitivity in Barley: Prospects for Facultative Growth Habit. Frontiers in Plant Science, 2020, 11, 585927.	3.6	19
11	Genetic diversity in developmental responses to light spectral quality in barley (Hordeum vulgare L.). BMC Plant Biology, 2020, 20, 207.	3.6	5
12	Durum Wheat Seminal Root Traits within Modern and Landrace Germplasm in Algeria. Agronomy, 2020, 10, 713.	3.0	9
13	Rapid On-Site Phenotyping via Field Fluorimeter Detects Differences in Photosynthetic Performance in a Hybrid—Parent Barley Germplasm Set. Sensors, 2020, 20, 1486.	3.8	21
14	Effects of Low Water Availability on Root Placement and Shoot Development in Landraces and Modern Barley Cultivars. Agronomy, 2020, 10, 134.	3.0	19
15	Evaluation of glycyrrhizin contents in licorice (Clycyrrhiza glabra L.) under drought and soil salinity conditions using nutrient concentrations and biochemical traits as biomarkers. Acta Physiologiae Plantarum, 2020, 42, 1.	2.1	7
16	Harnessing Novel Diversity From Landraces to Improve an Elite Barley Variety. Frontiers in Plant Science, 2019, 10, 434.	3.6	28
17	Fine-tuning of the flowering time control in winter barley: the importance of HvOS2 and HvVRN2 in non-inductive conditions. BMC Plant Biology, 2019, 19, 113.	3.6	14
18	Genetic association with highâ€resolution climate data reveals selection footprints in the genomes of barley landraces across the Iberian Peninsula. Molecular Ecology, 2019, 28, 1994-2012.	3.9	22

Ernesto Igartua

#	Article	IF	CITATIONS
19	Genome-wide association studies (GWAS) in barley. Burleigh Dodds Series in Agricultural Science, 2019, , 503-536.	0.2	2
20	Algerian durum wheat assessment for early drought tolerance shows landraces superiority. Egyptian Journal of Agronomy, 2019, .	0.3	2
21	Resequencing theVrs1 gene in Spanish barley landraces revealed reversion of six-rowed to two-rowed spike. Molecular Breeding, 2018, 38, 1.	2.1	10
22	Assessing different barley growth habits under Egyptian conditions for enhancing resilience to climate change. Field Crops Research, 2018, 224, 67-75.	5.1	30
23	Grain yield stability of high-yielding barley genotypes under Egyptian conditions for enhancing resilience to climate change. Crop and Pasture Science, 2018, 69, 681.	1.5	24
24	Analysis of Plant Pan-Genomes and Transcriptomes with GET_HOMOLOGUES-EST, a Clustering Solution for Sequences of the Same Species. Frontiers in Plant Science, 2017, 8, 184.	3.6	63
25	Large Differences in Gene Expression Responses to Drought and Heat Stress between Elite Barley Cultivar Scarlett and a Spanish Landrace. Frontiers in Plant Science, 2017, 8, 647.	3.6	54
26	Barley Types and Varieties in Spain: A Historical Overview. Ciencia E Investigacion Agraria, 2017, 44, 1-12.	0.2	3
27	A Cluster of Nucleotideâ€Binding Site–Leucineâ€Rich Repeat Genes Resides in a Barley Powdery Mildew Resistance Quantitative Trait Loci on 7HL. Plant Genome, 2016, 9, plantgenome2015.10.0101.	2.8	13
28	Assessing genetic and phenotypic diversity in pepper (Capsicum annuum L.) landraces from North-West Spain. Scientia Horticulturae, 2016, 203, 1-11.	3.6	33
29	Identification of quantitative trait loci for agronomic traits contributed by a barley (Hordeum) Tj ETQq1 1 0.784	314 rgBT / 1.9	Overlock 10 T
30	Selection footprints in barley breeding lines detected by combining genotyping-by-sequencing with reference genome information. Molecular Breeding, 2015, 35, 1.	2.1	7
31	BARLEYMAP: physical and genetic mapping of nucleotide sequences and annotation of surrounding loci in barley. Molecular Breeding, 2015, 35, 1.	2.1	91
32	HvFT1 polymorphism and effectââ,¬â€survey of barley germplasm and expression analysis. Frontiers in Plant Science, 2014, 5, 251.	3.6	49
33	Quantitative trait loci for agronomic traits in an elite barley population for Mediterranean conditions. Molecular Breeding, 2014, 33, 249-265.	2.1	52
34	Spanish barley landraces outperform modern cultivars at lowâ€productivity sites. Plant Breeding, 2014, 133, 218-226.	1.9	44
35	Fine mapping of the Rrs1 resistance locus against scald in two large populations derived from Spanish barley landraces. Theoretical and Applied Genetics, 2013, 126, 3091-3102.	3.6	30
36	Whole-genome analysis with SNPs from BOPA1 shows clearly defined groupings of Western Mediterranean, Ethiopian, and Fertile Crescent barleys. Genetic Resources and Crop Evolution, 2013, 60, 251-264.	1.6	15

ERNESTO IGARTUA

#	Article	IF	CITATIONS
37	Population structure and marker–trait associations for pomological traits in peach and nectarine cultivars. Tree Genetics and Genomes, 2013, 9, 331-349.	1.6	65
38	Resistance to powdery mildew in one Spanish barley landrace hardly resembles other previously identified wild barley resistances. European Journal of Plant Pathology, 2013, 136, 459-468.	1.7	12
39	Developmental patterns of a large set of barley (<i>Hordeum vulgare</i>) cultivars in response to ambient temperature. Annals of Applied Biology, 2013, 162, 309-323.	2.5	14
40	Towards Positional Isolation of Three Quantitative Trait Loci Conferring Resistance to Powdery Mildew in Two Spanish Barley Landraces. PLoS ONE, 2013, 8, e67336.	2.5	14
41	Barley Adaptation: Teachings from Landraces Will Help to Respond to Climate Change. , 2013, , 327-337.		0
42	Quantitative Trait Loci and Candidate Loci for Heading Date in a Large Population of a Wide Barley Cross. Crop Science, 2012, 52, 2469-2480.	1.8	24
43	Prognosis of iron chlorosis in pear (Pyrus communis L.) and peach (Prunus persica L. Batsch) trees using bud, flower and leaf mineral concentrations. Plant and Soil, 2012, 354, 121-139.	3.7	13
44	Fine mapping and comparative genomics integration of two quantitative trait loci controlling resistance to powdery mildew in a Spanish barley landrace. Theoretical and Applied Genetics, 2012, 124, 49-62.	3.6	25
45	Analysis of powdery mildew resistance in the Spanish barley core collection. Plant Breeding, 2011, 130, 195-202.	1.9	14
46	Development of a costâ€effective pyrosequencing approach for SNP genotyping in barley. Plant Breeding, 2011, 130, 394-397.	1.9	22
47	Introgression of an intermediate VRNH1 allele in barley (Hordeum vulgare L.) leads to reduced vernalization requirement without affecting freezing tolerance. Molecular Breeding, 2011, 28, 475-484.	2.1	20
48	HvFT1 (VrnH3) drives latitudinal adaptation in Spanish barleys. Theoretical and Applied Genetics, 2011, 122, 1293-1304.	3.6	43
49	Resistance to powdery mildew in Spanish barley landraces is controlled by different sets of quantitative trait loci. Theoretical and Applied Genetics, 2011, 123, 1019-1028.	3.6	19
50	Adaptation of barley to mild winters: A role for PPDH2. BMC Plant Biology, 2011, 11, 164.	3.6	66
51	Expression analysis of vernalization and day-length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2 (HvFT3) under long days. Journal of Experimental Botany, 2011, 62, 1939-1949.	4.8	57
52	Identification of quantitative trait loci for resistance to powdery mildew in a Spanish barley landrace. Molecular Breeding, 2010, 25, 581-592.	2.1	20
53	Screening the Spanish Barley Core Collection for disease resistance. Plant Breeding, 2010, 129, 45-52.	1.9	51
54	Yield QTL affected by heading date in Mediterranean grown barley. Plant Breeding, 2009, 128, 46-53.	1.9	62

4

Ernesto Igartua

#	Article	IF	CITATIONS
55	Joint analysis for heading date QTL in small interconnected barley populations. Molecular Breeding, 2008, 21, 383-399.	2.1	29
56	Heading date QTL in a springÂ×Âwinter barley cross evaluated in Mediterranean environments. Molecular Breeding, 2008, 21, 455-471.	2.1	58
57	Patterns of genetic and eco-geographical diversity in Spanish barleys. Theoretical and Applied Genetics, 2008, 116, 271-282.	3.6	62
58	Foliar fertilization of peach (Prunus persica (L.) Batsch) with different iron formulations: Effects on re-greening, iron concentration and mineral composition in treated and untreated leaf surfaces. Scientia Horticulturae, 2008, 117, 241-248.	3.6	57
59	Prognosis of iron chlorosis from the mineral composition of Â ⁻ owers in peach. Journal of Horticultural Science and Biotechnology, 2000, 75, 111-118.	1.9	33
60	Mechanisms of Malt Extract Development in Barleys from Different European Regions: I. Effect of Environment and Grain Protein Content on Malt Extract Yield. Journal of the Institute of Brewing, 2000, 106, 111-116.	2.3	21
61	Markerâ€Based Selection of QTL Affecting Grain and Malt Quality in Twoâ€Row Barley. Crop Science, 2000, 40, 1426-1433.	1.8	42
62	RFLP markers associated with major genes controlling heading date evaluated in a barley germ plasm pool. Heredity, 1999, 83, 551-559.	2.6	22
63	Genetic diversity of Prunus rootstocks analyzed by RAPD markers. Euphytica, 1999, 110, 139-149.	1.2	66
64	Further evidence supporting Morocco as a centre of origin of barley. Theoretical and Applied Genetics, 1999, 98, 913-918.	3.6	49
65	Integrating statistical and ecophysiological analyses of genotype by environment interaction for grain filling of barley I Field Crops Research, 1999, 62, 63-74.	5.1	49
66	The Spanish barley core collection. Genetic Resources and Crop Evolution, 1998, 45, 475-481.	1.6	61
67	Genetic diversity of barley cultivars grown in Spain, estimated by RFLP, similarity and coancestry coefficients. Plant Breeding, 1998, 117, 429-435.	1.9	20
68	Changes over time in the adaptation of barley releases in north-eastern Spain. Plant Breeding, 1998, 117, 531-535.	1.9	53
69	Registration of Four Sorghum Germplasm Randomâ€Mating Populations. Crop Science, 1997, 37, 1036-1037.	1.8	0
70	Responses to S1 Selection in Flint and Dent Synthetic Maize Populations. Crop Science, 1996, 36, 1129-1134.	1.8	18
71	Choice of selection environment for improving crop yields in saline areas. Theoretical and Applied Genetics, 1995, 91-91, 1016-1021.	3.6	22
72	Field responses of grain sorghum to a salinity gradient. Field Crops Research, 1995, 42, 15-25.	5.1	46

#	Article	IF	CITATIONS
73	Characterization and genetic control of germination-emergence responses of grain sorghum to salinity. Euphytica, 1994, 76, 185-193.	1.2	30