Jean Marcel R Gallo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8587560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of 5-Hydroxymethylfurfural from Glucose Using a Combination of Lewis and BrÄnsted Acid Catalysts in Water in a Biphasic Reactor with an Alkylphenol Solvent. ACS Catalysis, 2012, 2, 930-934.	11.2	455
2	Conversion of Hemicellulose into Furfural Using Solid Acid Catalysts in γâ€Valerolactone. Angewandte Chemie - International Edition, 2013, 52, 1270-1274.	13.8	397
3	Solvent Effects in Acidâ€Catalyzed Biomass Conversion Reactions. Angewandte Chemie - International Edition, 2014, 53, 11872-11875.	13.8	371
4	Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents. Green Chemistry, 2013, 15, 85-90.	9.0	310
5	Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts. Catalysis Science and Technology, 2013, 3, 927-931.	4.1	213
6	Toward Understanding Metal-Catalyzed Ethanol Reforming. ACS Catalysis, 2015, 5, 3841-3863.	11.2	188
7	Effects of γ-valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides. Green Chemistry, 2014, 16, 4659-4662.	9.0	149
8	Synthesis of Highly Ordered Hydrothermally Stable Mesoporous Niobia Catalysts by Atomic Layer Deposition. ACS Catalysis, 2011, 1, 1234-1245.	11.2	132
9	Selective Production of Levulinic Acid from Furfuryl Alcohol in THF Solvent Systems over H-ZSM-5. ACS Catalysis, 2015, 5, 3354-3359.	11.2	116
10	Production of Furfural from Lignocellulosic Biomass Using Beta Zeolite and Biomass-Derived Solvent. Topics in Catalysis, 2013, 56, 1775-1781.	2.8	111
11	Physicochemical Characterization and Surface Acid Properties of Mesoporous [Al]-SBA-15 Obtained by Direct Synthesis. Langmuir, 2010, 26, 5791-5800.	3.5	105
12	A Tailored Microenvironment for Catalytic Biomass Conversion in Inorganic–Organic Nanoreactors. Angewandte Chemie - International Edition, 2013, 52, 10349-10351.	13.8	66
13	Silylation of [Nb]-MCM-41 as an efficient tool to improve epoxidation activity and selectivity. Journal of Catalysis, 2006, 243, 57-63.	6.2	65
14	Cyclooctene epoxidation using Nb-MCM-41 and Ti-MCM-41 synthesized at room temperature. Applied Catalysis A: General, 2004, 266, 223-227.	4.3	52
15	Acid-functionalized mesoporous carbons for the continuous production of 5-hydroxymethylfurfural. Journal of Molecular Catalysis A, 2016, 422, 13-17.	4.8	44
16	The Structure of the Cu–CuO Sites Determines the Catalytic Activity of Cu Nanoparticles. ACS Catalysis, 2017, 7, 2419-2424.	11.2	42
17	Steam Reforming of Ethanol Using Ni–Co Catalysts Supported on MgAl ₂ O ₄ : Structural Study and Catalytic Properties at Different Temperatures. ACS Catalysis, 2021, 11, 2047-2061.	11.2	36
18	Rationalizing the conversion of glucose and xylose catalyzed by a combination of Lewis and BrÃ,nsted acids. Catalysis Today, 2020, 344, 92-101.	4.4	35

JEAN MARCEL R GALLO

#	Article	IF	CITATIONS
19	Catalytic Transformations of Ethanol for Biorefineries. Journal of the Brazilian Chemical Society, 2014, , .	0.6	33
20	Density Functional Theory and Reaction Kinetics Studies of the Water–Gas Shift Reaction on Pt–Re Catalysts. ChemCatChem, 2013, 5, 3690-3699.	3.7	28
21	Surface acidity of novel mesostructured silicas with framework aluminum obtained by SBA-16 related synthesis. Microporous and Mesoporous Materials, 2008, 111, 632-635.	4.4	27
22	The role of the interface between Cu and metal oxides in the ethanol dehydrogenation. Applied Catalysis A: General, 2020, 589, 117236.	4.3	27
23	A Tailored Microenvironment for Catalytic Biomass Conversion in Inorganic–Organic Nanoreactors. Angewandte Chemie, 2013, 125, 10539-10541.	2.0	24
24	Study of the effect of the base, the silica and the niobium sources on the [Nb]-MCM-41 synthesized at room temperature. Journal of Non-Crystalline Solids, 2008, 354, 1648-1653.	3.1	23
25	Tailoring Sn-SBA-15 properties for catalytic isomerization of glucose. Applied Catalysis A: General, 2019, 581, 37-42.	4.3	22
26	Support effect in ethylene oligomerization mediated by heterogenized nickel catalysts. Catalysis Communications, 2010, 11, 597-600.	3.3	21
27	The Effect of Ag in the Cu/ZrO2 Performance for the Ethanol Conversion. Topics in Catalysis, 2016, 59, 357-365.	2.8	19
28	Effect of the Pt Precursor and Loading on the Structural Parameters and Catalytic Properties of Pt/Al ₂ O ₃ . ChemCatChem, 2019, 11, 3064-3074.	3.7	18
29	Niobium phosphates as bifunctional catalysts for the conversion of biomass-derived monosaccharides. Applied Catalysis A: General, 2021, 617, 118099.	4.3	18
30	Heterogenized nickel catalysts for propene dimerization: Support effects on activity and selectivity. Catalysis Communications, 2013, 32, 32-35.	3.3	17
31	Solid Acid Resin Amberlyst 45 as a Catalyst for the Transesterification of Vegetable Oil. Frontiers in Chemistry, 2020, 8, 305.	3.6	17
32	Amine Catalyzed Atomic Layer Deposition of (3-Mercaptopropyl)trimethoxysilane for the Production of Heterogeneous Sulfonic Acid Catalysts. Chemistry of Materials, 2013, 25, 3844-3851.	6.7	16
33	Synthesis and characterization of niobium modified montmorillonite and its use in the acid-catalyzed synthesis of β-hydroxyethers. Applied Catalysis A: General, 2006, 311, 199-203.	4.3	15
34	Ethanol from Sugarcane and the Brazilian Biomass-Based Energy and Chemicals Sector. ACS Sustainable Chemistry and Engineering, 2021, 9, 4293-4295.	6.7	14
35	One-pot synthesis of mesoporous [Al]-SBA-16 and acidity characterization by CO adsorption. Microporous and Mesoporous Materials, 2011, 145, 124-130.	4.4	13
36	The Chemical Conversion of Biomass-Derived Saccharides: an Overview. Journal of the Brazilian Chemical Society, 2017, , .	0.6	11

JEAN MARCEL R GALLO

#	Article	IF	CITATIONS
37	Stepwise methane to methanol conversion: Effect of copper loading on the formation of active species in copper-exchanged mordenite. Catalysis Today, 2021, 381, 13-25.	4.4	11
38	Novel mesoporous carbon ceramics composites as electrodes for direct methanol fuel cell. Journal of Power Sources, 2011, 196, 8188-8196.	7.8	10
39	Implementation and optimization of the HySyLab DMFC single cell test station. International Journal of Hydrogen Energy, 2011, 36, 8082-8087.	7.1	7
40	Glycerol electrooxidation catalyzed by Pt-Sb supported in periodic mesoporous carbon CMK-3 and CMK-5. Journal of Electroanalytical Chemistry, 2021, 896, 115158.	3.8	7
41	Cyclooctene epoxidation using Nb-MCM-41 synthesized at room temperature. Studies in Surface Science and Catalysis, 2004, , 2945-2950.	1.5	5
42	Isomerization and Epimerization of Glucose Catalyzed by Sn-Containing Mesoporous Silica. Industrial & & & & & & & & & & & & & & & & & & &	3.7	5
43	Direct synthesis of Cu supported on mesoporous silica: Tailoring the Cu loading and the activity for ethanol dehydrogenation. Catalysis Today, 2020, , .	4.4	3
44	CHAPTER 11. Hydrogenolysis of Lignocellulosic Biomass with Carbon Monoxide or Formate in Pressurized Hot Water. RSC Energy and Environment Series, 2014, , 242-252.	0.5	1
45	Synthesis of Snâ€MCMâ€41 at Low Temperature: Effect of the Synthesis Parameters on the Structural, Textural, and Catalytic Properties. European Journal of Inorganic Chemistry, 2021, 2021, 2231-2240.	2.0	1
46	Innentitelbild: A Tailored Microenvironment for Catalytic Biomass Conversion in Inorganic–Organic Nanoreactors (Angew. Chem. 39/2013). Angewandte Chemie, 2013, 125, 10314-10314.	2.0	0
47	Catalysis: Expanding Frontiers. Catalysis Today, 2021, 381, 1-2.	4.4	0
48	Uso de etanol como intermediário para a produção de produtos quÃmicos de interesse industrial. , 2020, , 275-318.		0