Fulvia Rizza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8585805/publications.pdf Version: 2024-02-01

ΕΠΙΝΙΑ ΡΙΖΖΑ

#	Article	IF	CITATIONS
1	Extensive allele mining discovers novel genetic diversity in the loci controlling frost tolerance in barley. Theoretical and Applied Genetics, 2021, , 1.	3.6	9
2	Genetic variation in eggplant for Nitrogen Use Efficiency under contrasting NO ₃ ^{â€} supply. Journal of Integrative Plant Biology, 2020, 62, 487-508.	8.5	28
3	Elevated CO2 has concurrent effects on leaf and grain metabolism but minimal effects on yield in wheat. Journal of Experimental Botany, 2020, 71, 5990-6003.	4.8	27
4	Elevated CO ₂ Impact on Common Wheat (<i>Triticum aestivum</i> L.) Yield, Wholemeal Quality, and Sanitary Risk. Journal of Agricultural and Food Chemistry, 2020, 68, 10574-10585.	5.2	16
5	Changes in yield components, morphological, physiological and fruit quality traits in processing tomato cultivated in Italy since the 1930's. Scientia Horticulturae, 2019, 257, 108726.	3.6	32
6	Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiology and Biochemistry, 2019, 137, 203-212.	5.8	102
7	Interaction of Tomato Genotypes and Arbuscular Mycorrhizal Fungi under Reduced Irrigation. Horticulturae, 2019, 5, 79.	2.8	13
8	Physiological responses to chilling in cultivars of processing tomato released and cultivated over the past decades in Southern Europe. Scientia Horticulturae, 2018, 231, 118-125.	3.6	26
9	UAV-based high-throughput phenotyping to discriminate barley vigour with visible and near-infrared vegetation indices. International Journal of Remote Sensing, 2018, 39, 5330-5344.	2.9	42
10	Agrobiodiversity for Adaptive and Yield Traits in Romanian and Italian Barley Cultivars across Four Continental Environments. Agronomy, 2018, 8, 79.	3.0	2
11	Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae. Journal of Proteomics, 2017, 169, 21-32.	2.4	75
12	Elevated field atmospheric CO2 concentrations affect the characteristics of winter wheat (cv.) Tj ETQq0 0 0 rgB1	/Qverlock	10 Tf 50 30
13	Barley Developmental Mutants: The High Road to Understand the Cereal Spike Morphology. Diversity, 2017, 9, 21.	1.7	10
14	Increasing atmospheric CO 2 modifies durum wheat grain quality and pasta cooking quality. Journal of Cereal Science, 2016, 69, 245-251.	3.7	10
15	Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios. Theoretical and Applied Genetics, 2016, 129, 1711-1724.	3.6	48
16	Association between the allele compositions of major plant developmental genes and frost tolerance in barley (Hordeum vulgare L.) germplasm of different origin. Molecular Breeding, 2016, 36, 1.	2.1	24
17	Copy number variation at the HvCBF4–HvCBF2 genomic segment is a major component of frost resistance in barley. Plant Molecular Biology, 2016, 92, 161-175.	3.9	45

¹⁸A Combined Field/Laboratory Method for Assessment of Frost Tolerance with Freezing Tests and
Chlorophyll Fluorescence. Agronomy, 2015, 5, 71-88.3.014

Fulvia Rizza

#	Article	IF	CITATIONS
19	Transcriptome changes associated with cold acclimation in leaves of olive tree (Olea europaea L.). Tree Genetics and Genomes, 2015, 11, 1.	1.6	31
20	Allelic variation at Fr-H1/Vrn-H1 and Fr-H2 loci is the main determinant of frost tolerance in spring barley. Environmental and Experimental Botany, 2014, 106, 148-155.	4.2	21
21	Comparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo) Tj ETQq1	1 0.784314 5.1	rgBT /Overloc 64
22	Harden the chloroplast to protect the plant. Physiologia Plantarum, 2013, 147, 55-63.	5.2	99
23	Different stress responsive strategies to drought and heat in two durum wheat cultivars with contrasting water use efficiency. BMC Genomics, 2013, 14, 821.	2.8	93
24	Determinants of barley grain yield in drought-prone Mediterranean environments. Italian Journal of Agronomy, 2013, 8, 1.	1.0	17
25	The rice Osmyb4 gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants. Journal of Applied Genetics, 2012, 53, 133-143.	1.9	48
26	Constitutive differences in water use efficiency between two durum wheat cultivars. Field Crops Research, 2012, 125, 49-60.	5.1	56
27	Determinants of barley grain yield in a wide range of Mediterranean environments. Field Crops Research, 2011, 120, 169-178.	5.1	73
28	Diversity in the Response to Low Temperature in Representative Barley Genotypes Cultivated in Europe. Crop Science, 2011, 51, 2759-2779.	1.8	42
29	Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Field Crops Research, 2010, 119, 68-77.	5.1	118
30	Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theoretical and Applied Genetics, 2009, 119, 1335-1348.	3.6	54
31	Markerâ€essisted characterization of frost tolerance in barley (<i>Hordeum vulgare</i> L.). Plant Breeding, 2009, 128, 381-386.	1.9	29
32	Genetic progress of oats in Italy. Euphytica, 2008, 164, 679-687.	1.2	7
33	Effects of growth stage and hardening conditions on the association between frost resistance and the expression of the cold-induced protein COR14b in barley. Environmental and Experimental Botany, 2008, 62, 93-100.	4.2	27
34	Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 2008, 105, 1-14.	5.1	1,122
35	ISSR and Isozyme Characterization of Androgenetic Dihaploids Reveals Tetrasomic Inheritance in Tetraploid Somatic Hybrids between Solanum melongena and Solanum aethiopicum Group Gilo. Journal of Heredity, 2008, 99, 304-315	2.4	24
36	Durum wheat genes up-regulated in the early phases of cold stress are modulated by drought in a developmental and genotype dependent manner. Plant Science, 2007, 172, 1005-1016.	3.6	36

Fulvia Rizza

#	Article	IF	CITATIONS
37	Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theoretical and Applied Genetics, 2007, 115, 1083-1091.	3.6	145
38	Current status in production and utilization of dihaploids from somatic hybrids between eggplant (Solanum melongena L.) and its wild relatives. Acta Physiologiae Plantarum, 2005, 27, 723-733.	2.1	32
39	Development of PCR-based markers on chromosome 5H for assisted selection of frost-tolerant genotypes in barley. Molecular Breeding, 2004, 14, 265-273.	2.1	21
40	Two loci on chromosome 5H determine low-temperature tolerance in a â€~Nure' (winter) × â€~Tremois' (spring) barley map. Theoretical and Applied Genetics, 2004, 108, 670-680.	3.6	199
41	Use of a Water Stress Index to Identify Barley Genotypes Adapted to Rainfed and Irrigated Conditions. Crop Science, 2004, 44, 2127-2137.	1.8	125
42	Androgenic dihaploids from somatic hybrids between Solanum melongena and S. aethiopicum group gilo as a source of resistance to Fusarium oxysporum f. sp. melongenae. Plant Cell Reports, 2002, 20, 1022-1032.	5.6	78
43	Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breeding, 2001, 120, 389-396.	1.9	125
44	Inhibition of photosynthesis by Colletotrichum lindemuthianum in bean leaves determined by chlorophyll fluorescence imaging. Plant, Cell and Environment, 2001, 24, 947-956.	5.7	70
45	Wild and cultivated barleys show differences in the expression pattern of a cold-regulated gene family under different light and temperature conditions. Plant Molecular Biology, 1998, 38, 1061-1069.	3.9	46
46	Molecular adaptation of barley to cold and drought conditions. Developments in Plant Breeding, 1997, , 237-241.	0.2	8
47	Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 1997, 77, 523-531.	0.9	263
48	Cold Hardening In Triticale In Comparison With Rye And Wheat. Cereal Research Communications, 1997, 25, 947-954.	1.6	10
49	Molecular adaptation of barley to cold and drought conditions. Euphytica, 1996, 92, 215-219.	1.2	20
50	Physiological and Molecular Response of Barley to Cold and Drought Stress. , 1996, , 49-54.		1
51	Metabolic changes associated with cold-acclimation in contrasting cultivars of barley. Physiologia Plantarum, 1995, 94, 87-93.	5.2	50
52	Metabolic changes associated with cold-acclimation in contrasting cultivars of barley. Physiologia Plantarum, 1995, 94, 87-93.	5.2	34
53	Studies for assessing the influence of hardening on cold tolerance of barley genotypes. Euphytica, 1994, 75, 131-138.	1.2	55
54	Accumulation and characterization of the 75 kDa protein induced by low temperature in barley. Plant Science, 1994, 97, 39-46.	3.6	24