
## Mikhail I Vasilevskiy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8584542/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A PRIMER ON SURFACE PLASMON-POLARITONS IN GRAPHENE. International Journal of Modern Physics B, 2013, 27, 1341001.                                                                                                       | 2.0  | 325       |
| 2  | Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Communications, 2022, 341, 114573.                                                         | 1.9  | 177       |
| 3  | Optical bistability of graphene in the terahertz range. Physical Review B, 2014, 90, .                                                                                                                                  | 3.2  | 133       |
| 4  | Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene. Europhysics Letters, 2010, 92, 68001.                                                                  | 2.0  | 109       |
| 5  | Competition between ferroelectric and semiconductor properties in Pb(Zr0.65Ti0.35)O3 thin films<br>deposited by sol–gel. Journal of Applied Physics, 2003, 93, 4776-4783.                                               | 2.5  | 100       |
| 6  | Raman spectroscopy of optical phonons confined in semiconductor quantum dots and nanocrystals.<br>Journal of Raman Spectroscopy, 2007, 38, 618-633.                                                                     | 2.5  | 95        |
| 7  | Electron-phonon interaction effects in semiconductor quantum dots: A nonperturabative approach.<br>Physical Review B, 2004, 70, .                                                                                       | 3.2  | 84        |
| 8  | Tunable graphene-based polarizer. Journal of Applied Physics, 2012, 112, 084320.                                                                                                                                        | 2.5  | 81        |
| 9  | Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence. Journal of Optics (United Kingdom), 2013, 15, 114004.                                                             | 2.2  | 79        |
| 10 | Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing. Journal of Applied Physics, 2011, 109, .                                                  | 2.5  | 74        |
| 11 | Nonlinear TE-polarized surface polaritons on graphene. Physical Review B, 2014, 89, .                                                                                                                                   | 3.2  | 68        |
| 12 | Graphene-based polaritonic crystal. Physical Review B, 2012, 85, .                                                                                                                                                      | 3.2  | 61        |
| 13 | Dipolar vibrational modes in spherical semiconductor quantum dots. Physical Review B, 2002, 66, .                                                                                                                       | 3.2  | 47        |
| 14 | Impact of disorder on optical phonons confined in CdS nano-crystallites embedded in a SiO2matrix.<br>Journal of Physics Condensed Matter, 2001, 13, 3491-3509.                                                          | 1.8  | 45        |
| 15 | Impact of D <sub>2</sub> O/H <sub>2</sub> O Solvent Exchange on the Emission of HgTe and CdTe<br>Quantum Dots: Polaron and Energy Transfer Effects. ACS Nano, 2016, 10, 4301-4311.                                      | 14.6 | 43        |
| 16 | FIR Absorption in CdSe Quantum Dot Ensembles. Physica Status Solidi (B): Basic Research, 2001, 224,<br>599-604.                                                                                                         | 1.5  | 37        |
| 17 | Resonant Raman scattering in CdS <sub><i>x</i></sub> Se <sub>1â^²<i>x</i></sub> nanocrystals: effects<br>of phonon confinement, composition, and elastic strain. Journal of Raman Spectroscopy, 2011, 42,<br>1660-1669. | 2.5  | 37        |
| 18 | Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity: Tunable<br>interaction between two Bose-Einstein condensates. Physical Review B, 2015, 92, .                                | 3.2  | 36        |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Exact solution for square-wave grating covered with graphene: surface plasmon-polaritons in the terahertz range. Journal of Physics Condensed Matter, 2013, 25, 125303.                                                                     | 1.8 | 33        |
| 20 | Effective dielectric response of semiconductor composites. Physical Review B, 1996, 54, 5844-5851.                                                                                                                                          | 3.2 | 32        |
| 21 | Discrete solitons in graphene metamaterials. Physical Review B, 2015, 91, .                                                                                                                                                                 | 3.2 | 32        |
| 22 | Broadband Optical Absorption Caused by the Plasmonic Response of Coalesced Au Nanoparticles<br>Embedded in a TiO <sub>2</sub> Matrix. Journal of Physical Chemistry C, 2016, 120, 16931-16945.                                              | 3.1 | 31        |
| 23 | Nonperturbative approach to the calculation of multiphonon Raman scattering in semiconductor quantum dots: Polaron effect. Physical Review B, 2006, 74, .                                                                                   | 3.2 | 30        |
| 24 | Cascade upconversion of photoluminescence in quantum dot ensembles. Physical Review B, 2008, 78, .                                                                                                                                          | 3.2 | 30        |
| 25 | Topological photonic Tamm states and the Su-Schrieffer-Heeger model. Physical Review A, 2020, 101, .                                                                                                                                        | 2.5 | 29        |
| 26 | Gas Sensors Based on Localized Surface Plasmon Resonances: Synthesis of Oxide Films with Embedded<br>Metal Nanoparticles, Theory and Simulation, and Sensitivity Enhancement Strategies. Applied Sciences<br>(Switzerland), 2021, 11, 5388. | 2.5 | 29        |
| 27 | Anti tokes cooling in semiconductor nanocrystal quantum dots: A feasibility study. Physica Status<br>Solidi (A) Applications and Materials Science, 2009, 206, 2497-2509.                                                                   | 1.8 | 28        |
| 28 | Resonant Raman scattering in ZnO:Mn and ZnO:Mn:Al thin films grown by RF sputtering. Journal of<br>Physics Condensed Matter, 2011, 23, 334205.                                                                                              | 1.8 | 26        |
| 29 | Graphene Plasmons in Triangular Wedges and Grooves. ACS Photonics, 2016, 3, 2176-2183.                                                                                                                                                      | 6.6 | 26        |
| 30 | A source of terahertz coherent phonons. Journal of Physics Condensed Matter, 1998, 10, 5905-5921.                                                                                                                                           | 1.8 | 22        |
| 31 | Further insight into the temperature quenching of photoluminescence from InAsâ^•GaAs self-assembled quantum dots. Journal of Applied Physics, 2008, 103, .                                                                                  | 2.5 | 22        |
| 32 | Anomalous first-order Raman scattering in III-V quantum dots: Optical deformation potential interaction. Physical Review B, 2008, 78, .                                                                                                     | 3.2 | 21        |
| 33 | Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene.<br>Journal of Physics Condensed Matter, 2012, 24, 245303.                                                                               | 1.8 | 20        |
| 34 | Electrical spin injection in forward biased Schottky diodes based on InGaAs–GaAs quantum well<br>heterostructures. Applied Physics Letters, 2006, 89, 181118.                                                                               | 3.3 | 19        |
| 35 | Enhanced optical dichroism of graphene nanoribbons. Physical Review B, 2012, 86, .                                                                                                                                                          | 3.2 | 18        |
| 36 | Calculation of the Huang–Rhys parameter in spherical quantum dots: the optical deformation potential effect. Journal of Physics Condensed Matter, 2007, 19, 346215.                                                                         | 1.8 | 16        |

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Dielectric function of hydrogenated amorphous silicon near the optical absorption edge. Journal of Applied Physics, 2009, 106, 073110.                                         | 2.5 | 16        |
| 38 | Raman study of insulating and conductive ZnO:(Al, Mn) thin films. Physica Status Solidi (A)<br>Applications and Materials Science, 2015, 212, 2345-2354.                       | 1.8 | 16        |
| 39 | Compositional, Optical and Electrical Characteristics of SiOx Thin Films Deposited by Reactive Pulsed DC Magnetron Sputtering. Coatings, 2019, 9, 468.                         | 2.6 | 16        |
| 40 | Surface Plasmon Resonance in a Metallic Nanoparticle Embedded in a Semiconductor Matrix:<br>Exciton–Plasmon Coupling. ACS Photonics, 2019, 6, 204-210.                         | 6.6 | 16        |
| 41 | Energy Transfer via Exciton Transport in Quantum Dot Based Self-Assembled Fractal Structures.<br>Journal of Physical Chemistry C, 2014, 118, 4982-4990.                        | 3.1 | 15        |
| 42 | Optical Properties of PZT 65/35 Thin Films Deposited by Sol-Gel. Ferroelectrics, 2002, 268, 187-192.                                                                           | 0.6 | 14        |
| 43 | Study of the piezoresistivity of doped nanocrystalline silicon thin films. Journal of Applied Physics, 2011, 109, .                                                            | 2.5 | 14        |
| 44 | Resonant Raman scattering in spherical quantum dots: II–VI <i>versus</i> III–V semiconductor<br>nanocrystals. Physica Status Solidi (B): Basic Research, 2010, 247, 1488-1491. | 1.5 | 13        |
| 45 | Raman study of dopedâ€ZnO thin films grown by rf sputtering. Physica Status Solidi C: Current Topics in<br>Solid State Physics, 2010, 7, 2290-2293.                            | 0.8 | 13        |
| 46 | Ag fractals formed on top of a porous TiO <sub>2</sub> thin film. Physica Status Solidi - Rapid<br>Research Letters, 2016, 10, 530-534.                                        | 2.4 | 13        |
| 47 | Hybrid plasmon-magnon polaritons in graphene-antiferromagnet heterostructures. 2D Materials, 2019,<br>6, 045003.                                                               | 4.4 | 13        |
| 48 | NANOPTICS: In-depth analysis of NANomaterials for OPTICal localized surface plasmon resonance<br>Sensing. SoftwareX, 2020, 12, 100522.                                         | 2.6 | 13        |
| 49 | 1.3–1.5 µm electroluminescence from Schottky diodes made on Au-InAs/GaAs quantum-size<br>heterostructures. Semiconductor Science and Technology, 2004, 19, S469-S471.          | 2.0 | 12        |
| 50 | Resonance energy transfer in self-organized organic/inorganic dendrite structures. Nanoscale, 2013,<br>5, 9317.                                                                | 5.6 | 12        |
| 51 | Renormalization of nanoparticle polarizability in the vicinity of a graphene-covered interface.<br>Physical Review B, 2014, 90, .                                              | 3.2 | 12        |
| 52 | Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy. Applied Physics Letters, 2015, 107, .                                    | 3.3 | 12        |
| 53 | Impact of Graphene on the Polarizability of a Neighbour Nanoparticle: A Dyadic Green's Function<br>Study. Applied Sciences (Switzerland), 2017, 7, 1158.                       | 2.5 | 12        |
| 54 | Polaron relaxation in a quantum dot due to anharmonic coupling within a mean-field approach.<br>Physical Review B, 2009, 79, .                                                 | 3.2 | 11        |

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Resonant Excitation of Confined Excitons in Nanocrystal Quantum Dots Using Surface<br>Plasmon-Polaritons. Journal of Physical Chemistry C, 2012, 116, 13738-13744.       | 3.1 | 11        |
| 56 | Optical conductivity of ABA stacked graphene trilayer: mid-IR resonance due to band nesting. Journal of Physics Condensed Matter, 2014, 26, 395301.                      | 1.8 | 11        |
| 57 | Terahertz response of patterned epitaxial graphene. New Journal of Physics, 2015, 17, 053045.                                                                            | 2.9 | 11        |
| 58 | Structural and vibrational properties of SnxGe1-x: Modeling and experiments. Journal of Applied Physics, 2018, 124, .                                                    | 2.5 | 11        |
| 59 | Probing the Exciton Density of States in Semiconductor Nanocrystals Using Integrated Photoluminescence Spectroscopy. Monatshefte Für Chemie, 2002, 133, 909-918.         | 1.8 | 10        |
| 60 | Suppression of the photoluminescence quenching effect in self-assembled InAsâ^•GaAs quantum dots.<br>Applied Physics Letters, 2005, 87, 053109.                          | 3.3 | 10        |
| 61 | Scattering of surface plasmon polaritons in a graphene multilayer photonic crystal with inhomogeneous doping. Physical Review B, 2016, 93, .                             | 3.2 | 10        |
| 62 | Condensed exciton polaritons in a two-dimensional trap: Elementary excitations and shaping by a<br>Gaussian pump beam. Physical Review B, 2013, 87, .                    | 3.2 | 9         |
| 63 | Effect of clustering on the surface plasmon band in thin films of metallic nanoparticles. Journal of Nanophotonics, 2014, 9, 093796.                                     | 1.0 | 9         |
| 64 | Raman and IR-ATR spectroscopy studies of heteroepitaxial structures with a GaN:C top layer. Journal Physics D: Applied Physics, 2017, 50, 365103.                        | 2.8 | 9         |
| 65 | Far-infrared Tamm polaritons in a microcavity with incorporated graphene sheet. Optical Materials<br>Express, 2019, 9, 244.                                              | 3.0 | 9         |
| 66 | Multi-stacks of epitaxial GeSn self-assembled dots in Si: Structural analysis. Journal of Applied<br>Physics, 2015, 117, 125706.                                         | 2.5 | 8         |
| 67 | Exciton–polaritons of a 2D semiconductor layer in a cylindrical microcavity. Journal of Applied Physics, 2020, 127, 133101.                                              | 2.5 | 8         |
| 68 | Quantum simulation of the ground-state Stark effect in small molecules: a case study using IBM Q.<br>Soft Computing, 2021, 25, 6807-6830.                                | 3.6 | 8         |
| 69 | Polaron effect on Raman scattering in semiconductor quantum dots. Semiconductor Science and Technology, 2004, 19, S312-S315.                                             | 2.0 | 7         |
| 70 | Modelling of the composition segregation effect during epitaxial growth of InGaAs quantum well heterostructures. Semiconductor Science and Technology, 2010, 25, 085008. | 2.0 | 7         |
| 71 | Probing spatial correlations in a system of polarizable nanoparticles via measuring its optical extinction spectrum. Europhysics Letters, 2013, 102, 67001.              | 2.0 | 7         |
| 72 | Excitation of localized graphene plasmons by a metallic slit. Physical Review B, 2020, 101, .                                                                            | 3.2 | 7         |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Exciton-Photon Interactions in Semiconductor Nanocrystals: Radiative Transitions, Non-Radiative Processes and Environment Effects. Applied Sciences (Switzerland), 2021, 11, 497.                              | 2.5 | 7         |
| 74 | Influence of matrix defects on the photoluminescence of InAs self-assembled quantum dots. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1348-1352.                                  | 1.8 | 6         |
| 75 | Excited states of exciton-polariton condensates in 2D and 1D harmonic traps. Physical Review B, 2014, 89, .                                                                                                    | 3.2 | 6         |
| 76 | Effects of alloy disorder and confinement on phonon modes and Raman scattering in<br>SixGe1â^'xnanocrystals: A microscopic modeling. Journal of Applied Physics, 2014, 115, 143505.                            | 2.5 | 6         |
| 77 | Variational calculation of the lowest exciton states in phosphorene and transition metal dichalcogenides. Journal of Physics Condensed Matter, 2022, 34, 045702.                                               | 1.8 | 6         |
| 78 | Determination of the far infrared optical constants of Îdoped bulk CdxHg1â^'xTe (CMT) by dispersive<br>fourier transform spectroscopy. Journal of Infrared, Millimeter and Terahertz Waves, 1995, 16, 763-773. | 0.6 | 5         |
| 79 | Diffusion instability of homogeneous distribution of mercury in cadmium mercury telluride.<br>Semiconductor Science and Technology, 1995, 10, 157-162.                                                         | 2.0 | 5         |
| 80 | Dipole-active vibrations confined in InP quantum dots. Physica B: Condensed Matter, 2002, 316-317, 452-454.                                                                                                    | 2.7 | 5         |
| 81 | Magnetic field assisted transmission of THz waves through a graphene layer combined with a periodically perforated metallic film. Physical Review B, 2018, 97, .                                               | 3.2 | 5         |
| 82 | Double-barrier coherent sound generator: a new device. Superlattices and Microstructures, 1997, 22, 427-430.                                                                                                   | 3.1 | 4         |
| 83 | Optical Phonons in CdS Nanocrystals: Effects of Size, Shape and Packing Density. Materials Research<br>Society Symposia Proceedings, 1999, 571, 217.                                                           | 0.1 | 4         |
| 84 | Ab-initio modeling of a-Si and a-Si:H. Physica Status Solidi C: Current Topics in Solid State Physics, 2010,<br>7, 1432-1435.                                                                                  | 0.8 | 4         |
| 85 | Simulation of Nonradiative Energy Transfer in Photosynthetic Systems Using a Quantum Computer.<br>Complexity, 2020, 2020, 1-12.                                                                                | 1.6 | 4         |
| 86 | The effects of short-range order and natural microinhomogeneities on the FIR optical properties of CdxHg1â°'xTe. Journal of Electronic Materials, 1999, 28, 654-661.                                           | 2.2 | 3         |
| 87 | Is polaron effect important for resonant Raman scattering in self-assembled quantum dots?. Physica<br>Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 862-866.                                | 0.8 | 3         |
| 88 | Exciton-phonon interaction in semiconductor nanocrystals. , 2008, , 217-255.                                                                                                                                   |     | 3         |
| 89 | Phonon modes and Raman scattering in Si <sub>x</sub> Ge <sub>1â€x</sub> nanocrystals: microscopic modelling. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 701-704.                | 0.8 | 3         |
| 90 | Modeling of a Plasmonic Biosensor Based on a Graphene Nanoribbon Superlattice. Physica Status<br>Solidi (B): Basic Research, 2022, 259, .                                                                      | 1.5 | 3         |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Complex model for plasma-enhanced heteroepitaxial deposition of A2B6semiconductor compounds using MOC. Semiconductor Science and Technology, 1992, 7, 245-254.                              | 2.0 | 2         |
| 92  | Phonons in a medium with correlated substitutional disorder: a one-dimensional study. Journal of<br>Physics Condensed Matter, 1992, 4, 9299-9308.                                           | 1.8 | 2         |
| 93  | Influence of cluster formation on localization of optical phonons in two-dimensional pseudobinary substitutional solid solutions. Physics of the Solid State, 2003, 45, 1154-1161.          | 0.6 | 2         |
| 94  | Cascade upconversion of photoluminescence in ensembles of IIâ€VI semiconductor nanocrystals.<br>Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1517-1519.         | 0.8 | 2         |
| 95  | Light emission and spin-polarised hole injection in InAs/GaAs quantum dot heterostructures with<br>Schottky contact. Europhysics Letters, 2012, 98, 27012.                                  | 2.0 | 2         |
| 96  | A versatile fluorescence lifetime imaging system for scanning large areas with high time and spatial resolution. Proceedings of SPIE, 2014, , .                                             | 0.8 | 2         |
| 97  | Short-range order in a 1D substitutional solid solution. Journal of Physics Condensed Matter, 1991, 3, 7133-7138.                                                                           | 1.8 | 1         |
| 98  | Confined LO phonons in superlattices with interfacial broadening. Journal of Physics Condensed<br>Matter, 1992, 4, 4509-4518.                                                               | 1.8 | 1         |
| 99  | Mixed optical phonon modes in semiconductor nanocrystals synthesized in porous Al2O3 matrix.<br>Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2638-2641.         | 0.8 | 1         |
| 100 | Localization of phonon polaritons in disordered polar media. Physical Review E, 2005, 72, 066618.                                                                                           | 2.1 | 1         |
| 101 | Electron confinement in nanocrystals embedded in random media: Andersen localization effects. AIP<br>Conference Proceedings, 2007, , .                                                      | 0.4 | 1         |
| 102 | Electroluminescence And Spin-Polarized Hole Injection In InAsâ^•GaAs Quantum Dot Heterostructures. ,<br>2010, , .                                                                           |     | 1         |
| 103 | Near-field resonant energy transfer between spherical quantum dots. , 2014, , .                                                                                                             |     | 1         |
| 104 | Tamm Polaritons and Cavity Modes in the FIR Range. , 2018, , .                                                                                                                              |     | 1         |
| 105 | Localized polariton states in a photonic crystal intercalated by a transition metal dichalcogenide monolayer. Journal of the Optical Society of America B: Optical Physics, 2021, 38, C225. | 2.1 | 1         |
| 106 | The effect of vibrational degrees of freedom on the phase transition in a 2D Ising model. Physica A:<br>Statistical Mechanics and Its Applications, 1999, 274, 367-373.                     | 2.6 | 0         |
| 107 | Size Dependence Of The Optical Gap In Silicon Nanocrystals Embedded Into a-Si:H Matrix. AIP<br>Conference Proceedings, 2005, , .                                                            | 0.4 | 0         |
| 108 | Polaron Effect In Semiconductor Quantum Dots: Impact On The Optical Absorption, Up-converted Photoluminescence And Raman Scattering. AIP Conference Proceedings, 2005, , .                  | 0.4 | 0         |

| #   | Article                                                                                                                                                                      | IF                 | CITATIONS     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| 109 | Resonant Raman Scattering In Spherical InP QDs: The Role Of The Optical Deformation Potential<br>Interaction. AIP Conference Proceedings, 2005, , .                          | 0.4                | 0             |
| 110 | Resonant Raman scattering on optical phonons confined in spherical semiconductor nanocrystals:<br>ODP interaction and polaron effects. AIP Conference Proceedings, 2007, , . | 0.4                | 0             |
| 111 | Polaron Relaxation In A Quantum Dot Due To Anharmonic Coupling Within A Mean-Field Approach. , 2010, , .                                                                     |                    | 0             |
| 112 | Is it possible to assess spatial correlations in a system of polarizable particles by measuring its optical response?. Proceedings of SPIE, 2011, , .                        | 0.8                | 0             |
| 113 | Faraday effect in ZnO:Mn thin films. AIP Conference Proceedings, 2011, , .                                                                                                   | 0.4                | 0             |
| 114 | Optical response of fractal aggregates of polarizable particles. , 2014, , .                                                                                                 |                    | 0             |
| 115 | Graphene-based nanostructures: Plasmonics in the THz range. , 2015, , .                                                                                                      |                    | 0             |
| 116 | Back Cover: Ag fractals formed on top of a porous TiO <sub>2</sub> thin film (Phys. Status Solidi RRL) Tj ETQqO                                                              | 0 0 rgBT /0<br>2.4 | Overlock 10 1 |
|     |                                                                                                                                                                              |                    |               |

| 117 | Graphene and polarisable nanoparticles: Looking good together?. , 2016, , .                                                                     |     | Ο |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 118 | Surface-Plasmon-Polariton-Assisted Diffraction of THz Waves on a Graphene-Covered Slit. , 2020, , .                                             |     | 0 |
| 119 | Electrical spin injection in light emitting Schottky diodes based on InGaAs /GaAs QW<br>heterostructures. AIP Conference Proceedings, 2007, , . | 0.4 | 0 |
| 120 | 10.1007/s11451-008-1011-6. , 2010, 50, 52.                                                                                                      |     | 0 |
| 121 | Optical Properties of Bulk and Nanocrystalline Cadmium Telluride. , 2013, , 1-22.                                                               |     | 0 |
| 122 | Electromagnetic properties of a monolayer of polarisable particles deposited on graphene. , 2017, , .                                           |     | 0 |