
## Peter John Scammells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8584520/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Biodegradable ionic liquids : Part II. Effect of the anion and toxicology. Green Chemistry, 2005, 7, 9.                                                                                                                       | 9.0  | 496       |
| 2  | Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chemistry, 2004, 6, 166.                                                                                                              | 9.0  | 452       |
| 3  | Biodegradable ionic liquids : Part III. The first readily biodegradable ionic liquids. Green Chemistry, 2006, 8, 156.                                                                                                         | 9.0  | 282       |
| 4  | The role of kinetic context in apparent biased agonism at GPCRs. Nature Communications, 2016, 7,<br>10842.                                                                                                                    | 12.8 | 270       |
| 5  | Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype Selectivity. Cell, 2017, 168, 867-877.e13.                                                                                                               | 28.9 | 237       |
| 6  | A Novel Mechanism of G Protein-coupled Receptor Functional Selectivity. Journal of Biological Chemistry, 2008, 283, 29312-29321.                                                                                              | 3.4  | 165       |
| 7  | Biodegradable pyridinium ionic liquids: design, synthesis and evaluation. Green Chemistry, 2009, 11,<br>83-90.                                                                                                                | 9.0  | 156       |
| 8  | Phosphonium ionic liquids: design, synthesis and evaluation of biodegradability. Green Chemistry,<br>2009, 11, 1595.                                                                                                          | 9.0  | 137       |
| 9  | Allosteric Modulators of the Adenosine A <sub>1</sub> Receptor: Synthesis and Pharmacological<br>Evaluation of 4-Substituted 2-Amino-3-benzoylthiophenes. Journal of Medicinal Chemistry, 2009, 52,<br>4543-4547.             | 6.4  | 124       |
| 10 | Transformation of Poorly Water-Soluble Drugs into Lipophilic Ionic Liquids Enhances Oral Drug Exposure from Lipid Based Formulations. Molecular Pharmaceutics, 2015, 12, 1980-1991.                                           | 4.6  | 121       |
| 11 | Ionic liquids provide unique opportunities for oral drug delivery: structure optimization and in vivo<br>evidence of utility. Chemical Communications, 2014, 50, 1688-1690.                                                   | 4.1  | 118       |
| 12 | Further investigation of the biodegradability of imidazolium ionic liquids. Green Chemistry, 2009, 11, 821.                                                                                                                   | 9.0  | 112       |
| 13 | A new mechanism of allostery in a G protein–coupled receptor dimer. Nature Chemical Biology, 2014,<br>10, 745-752.                                                                                                            | 8.0  | 108       |
| 14 | A Monod-Wyman-Changeux Mechanism Can Explain G Protein-coupled Receptor (GPCR) Allosteric<br>Modulation. Journal of Biological Chemistry, 2012, 287, 650-659.                                                                 | 3.4  | 98        |
| 15 | Separation of on-target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4614-4619. | 7.1  | 92        |
| 16 | The design and synthesis of biodegradable pyridinium ionic liquids. Green Chemistry, 2008, 10, 436.                                                                                                                           | 9.0  | 90        |
| 17 | Efficient N-Demethylation of Opiate Alkaloids Using a Modified Nonclassical Polonovski Reaction.<br>Journal of Organic Chemistry, 2003, 68, 9847-9850.                                                                        | 3.2  | 82        |
| 18 | Promiscuous 2-Aminothiazoles (PrATs): A Frequent Hitting Scaffold. Journal of Medicinal Chemistry,<br>2015, 58, 1205-1214.                                                                                                    | 6.4  | 75        |

| #  | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Progress Toward the Development of Noscapine and Derivatives as Anticancer Agents. Journal of Medicinal Chemistry, 2015, 58, 5699-5727.                                                                                                                                       | 6.4  | 74        |
| 20 | New Methodology for the N-Demethylation of Opiate Alkaloids. Journal of Organic Chemistry, 2007, 72, 9881-9885.                                                                                                                                                               | 3.2  | 67        |
| 21 | Further studies on the biodegradation of ionic liquids. Green Chemistry, 2010, 12, 1783.                                                                                                                                                                                      | 9.0  | 61        |
| 22 | Sonogashira coupling reactions in biodegradable ionic liquids derived from nicotinic acid. Green Chemistry, 2010, 12, 650.                                                                                                                                                    | 9.0  | 58        |
| 23 | Role of the Second Extracellular Loop of the Adenosine A <sub>1</sub> Receptor on Allosteric<br>Modulator Binding, Signaling, and Cooperativity. Molecular Pharmacology, 2016, 90, 715-725.                                                                                   | 2.3  | 56        |
| 24 | Molecular Mechanisms of Bitopic Ligand Engagement with the M1 Muscarinic Acetylcholine Receptor.<br>Journal of Biological Chemistry, 2014, 289, 23817-23837.                                                                                                                  | 3.4  | 55        |
| 25 | Synthesis and Characterization of Novel 2-Amino-3-benzoylthiophene Derivatives as Biased Allosteric Agonists and Modulators of the Adenosine A <sub>1</sub> Receptor. Journal of Medicinal Chemistry, 2012, 55, 2367-2375.                                                    | 6.4  | 53        |
| 26 | Synthesis and Structure–Activity Relationships of Phosphonic Arginine Mimetics as Inhibitors of the<br>M1 and M17 Aminopeptidases from <i>Plasmodium falciparum</i> . Journal of Medicinal Chemistry, 2013,<br>56, 5213-5217.                                                 | 6.4  | 53        |
| 27 | Synthesis and Pharmacological Profiling of Analogues of Benzyl Quinolone Carboxylic Acid (BQCA) as Allosteric Modulators of the M <sub>1</sub> Muscarinic Receptor. Journal of Medicinal Chemistry, 2013, 56, 5151-5172.                                                      | 6.4  | 53        |
| 28 | Two-Pronged Attack: Dual Inhibition of <i>Plasmodium falciparum</i> M1 and M17<br>Metalloaminopeptidases by a Novel Series of Hydroxamic Acid-Based Inhibitors. Journal of Medicinal<br>Chemistry, 2014, 57, 9168-9183.                                                       | 6.4  | 52        |
| 29 | Two-Step Iron(0)-Mediated N-Demethylation of <i>N</i> -Methyl Alkaloids. Journal of Organic<br>Chemistry, 2010, 75, 4806-4811.                                                                                                                                                | 3.2  | 50        |
| 30 | Mechanistic Insights into Allosteric Structure-Function Relationships at the M1 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 2014, 289, 33701-33711.                                                                                                   | 3.4  | 49        |
| 31 | Ionic Liquid Forms of Weakly Acidic Drugs in Oral Lipid Formulations: Preparation, Characterization,<br>in Vitro Digestion, and in Vivo Absorption Studies. Molecular Pharmaceutics, 2017, 14, 3669-3683.                                                                     | 4.6  | 49        |
| 32 | Discovery of a Novel Class of Negative Allosteric Modulator of the Dopamine D <sub>2</sub><br>Receptor Through Fragmentation of a Bitopic Ligand. Journal of Medicinal Chemistry, 2015, 58,<br>6819-6843.                                                                     | 6.4  | 47        |
| 33 | Cryptic pocket formation underlies allosteric modulator selectivity at muscarinic GPCRs. Nature<br>Communications, 2019, 10, 3289.                                                                                                                                            | 12.8 | 47        |
| 34 | Determination of Adenosine A <sub>1</sub> Receptor Agonist and Antagonist Pharmacology<br>Using <i>Saccharomyces cerevisiae</i> : Implications for Ligand Screening and Functional Selectivity.<br>Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 277-286. | 2.5  | 46        |
| 35 | Synthesis and Biological Evaluation of <i>N</i> ‣ubstituted Noscapine Analogues. ChemMedChem, 2012,<br>7, 2122-2133.                                                                                                                                                          | 3.2  | 46        |
| 36 | Potent dual inhibitors of Plasmodium falciparum M1 and M17 aminopeptidases through optimization of S1 pocket interactions. European Journal of Medicinal Chemistry, 2016, 110, 43-64.                                                                                         | 5.5  | 46        |

| #  | Article                                                                                                                                                                                                                                                                                                                                | IF                | CITATIONS  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|
| 37 | Substituted 1,3-Dipropylxanthines as Irreversible Antagonists of A1 Adenosine Receptors. Journal of Medicinal Chemistry, 1994, 37, 2704-2712.                                                                                                                                                                                          | 6.4               | 41         |
| 38 | 3- and 6-Substituted 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines as A1 adenosine receptor allosteric modulators and antagonists. Bioorganic and Medicinal Chemistry, 2009, 17, 7353-7361.                                                                                                                                         | 3.0               | 41         |
| 39 | Structure–Activity Study of<br><i>N</i> ,(( <i>trans</i> )-4-(2-(7-Cyano-3,4-dihydroisoquinolin-2(1 <i>H</i> )-yl)ethyl)cyclohexyl)-1 <i>H</i> -indole-2<br>(SB269652), a Bitopic Ligand That Acts as a Negative Allosteric Modulator of the Dopamine<br>D <sub>2</sub> Receptor, Journal of Medicinal Chemistry, 2015, 58, 5287-5307. | 2-carboxan<br>6.4 | nide<br>40 |
| 40 | Delineating the Mode of Action of Adenosine A <sub>1</sub> Receptor Allosteric Modulators.<br>Molecular Pharmacology, 2010, 78, 444-455.                                                                                                                                                                                               | 2.3               | 39         |
| 41 | Unlocking the full potential of lipid-based formulations using lipophilic salt/ionic liquid forms.<br>Advanced Drug Delivery Reviews, 2019, 142, 75-90.                                                                                                                                                                                | 13.7              | 39         |
| 42 | Synthesis of Thienoâ€Fused Heterocycles through Reiterative Iodocyclization. Advanced Synthesis and Catalysis, 2014, 356, 1974-1978.                                                                                                                                                                                                   | 4.3               | 36         |
| 43 | 4-Phenylpyridin-2-one Derivatives: A Novel Class of Positive Allosteric Modulator of the<br>M <sub>1</sub> Muscarinic Acetylcholine Receptor. Journal of Medicinal Chemistry, 2016, 59, 388-409.                                                                                                                                       | 6.4               | 35         |
| 44 | Transformation of Biopharmaceutical Classification System Class I and III Drugs Into Ionic Liquids and<br>Lipophilic Salts for Enhanced Developability Using Lipid Formulations. Journal of Pharmaceutical<br>Sciences, 2018, 107, 203-216.                                                                                            | 3.3               | 35         |
| 45 | Quantification of chloride ion impurities in ionic liquids using ICP-MS analysis. Green Chemistry, 2004, 6, 341.                                                                                                                                                                                                                       | 9.0               | 34         |
| 46 | Screening the Medicines for Malaria Venture "Malaria Box" against the Plasmodium falciparum<br>Aminopeptidases, M1, M17 and M18. PLoS ONE, 2015, 10, e0115859.                                                                                                                                                                         | 2.5               | 34         |
| 47 | Enhancing the Oral Absorption of Kinase Inhibitors Using Lipophilic Salts and Lipid-Based Formulations. Molecular Pharmaceutics, 2018, 15, 5678-5696.                                                                                                                                                                                  | 4.6               | 34         |
| 48 | Further investigation of the N-demethylation of tertiary amine alkaloids using the non-classical Polonovski reaction. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2868-2871.                                                                                                                                                 | 2.2               | 33         |
| 49 | Ligand-Induced Conformational Change of <i>Plasmodium falciparum</i> AMA1 Detected Using<br><sup>19</sup> F NMR. Journal of Medicinal Chemistry, 2014, 57, 6419-6427.                                                                                                                                                                  | 6.4               | 33         |
| 50 | Fluorosulfonyl-Substituted Xanthines as Selective Irreversible Antagonists for the A1-Adenosine<br>Receptor. Journal of Medicinal Chemistry, 2000, 43, 4973-4980.                                                                                                                                                                      | 6.4               | 32         |
| 51 | Effects of Conformational Restriction of 2-Amino-3-benzoylthiophenes on A <sub>1</sub> Adenosine<br>Receptor Modulation. Journal of Medicinal Chemistry, 2010, 53, 6550-6559.                                                                                                                                                          | 6.4               | 31         |
| 52 | Grignard Reactions in Pyridinium and Phosphonium Ionic Liquids. European Journal of Organic<br>Chemistry, 2011, 2011, 942-950.                                                                                                                                                                                                         | 2.4               | 31         |
| 53 | Reverse Engineering of the Selective Agonist TBPB Unveils Both Orthosteric and Allosteric Modes of Action at the M1 Muscarinic Acetylcholine Receptor. Molecular Pharmacology, 2013, 84, 425-437.                                                                                                                                      | 2.3               | 31         |
| 54 | The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti-fibrotic signalling. Biochemical Pharmacology, 2016, 117, 46-56.                                                                                                                                                                          | 4.4               | 30         |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Hydroxamic Acid Inhibitors Provide Cross-Species Inhibition of <i>Plasmodium</i> M1 and M17<br>Aminopeptidases. Journal of Medicinal Chemistry, 2019, 62, 622-640.                                                                                          | 6.4 | 30        |
| 56 | A Structure–Activity Relationship Study of Bitopic <i>N</i> <sup>6</sup> -Substituted Adenosine<br>Derivatives as Biased Adenosine A <sub>1</sub> Receptor Agonists. Journal of Medicinal Chemistry,<br>2018, 61, 2087-2103.                                | 6.4 | 29        |
| 57 | RAFT-Mediated Polymerization of Styrene in Readily Biodegradable Ionic Liquids. Macromolecules, 2009, 42, 1604-1609.                                                                                                                                        | 4.8 | 28        |
| 58 | The Synthesis and Biological Evaluation of Multifunctionalised Derivatives of Noscapine as Cytotoxic Agents. ChemMedChem, 2014, 9, 399-410.                                                                                                                 | 3.2 | 28        |
| 59 | Synthesis and Pharmacological Evaluation of Analogues of Benzyl Quinolone Carboxylic Acid (BQCA)<br>Designed to Bind Irreversibly to an Allosteric Site of the M1Muscarinic Acetylcholine Receptor.<br>Journal of Medicinal Chemistry, 2014, 57, 5405-5418. | 6.4 | 27        |
| 60 | New 2,N6-Disubstituted adenosines: potent and selective A1 adenosine receptor agonists. Bioorganic and Medicinal Chemistry, 2002, 10, 1115-1122.                                                                                                            | 3.0 | 26        |
| 61 | The structural determinants of the bitopic binding mode of a negative allosteric modulator of the dopamine D 2 receptor. Biochemical Pharmacology, 2018, 148, 315-328.                                                                                      | 4.4 | 26        |
| 62 | Subtype-Selective Fluorescent Ligands as Pharmacological Research Tools for the Human Adenosine A <sub>2A</sub> Receptor. Journal of Medicinal Chemistry, 2020, 63, 2656-2672.                                                                              | 6.4 | 25        |
| 63 | Ionic Liquid Forms of the Antimalarial Lumefantrine in Combination with LFCS Type IIIB Lipid-Based<br>Formulations Preferentially Increase Lipid Solubility, In Vitro Solubilization Behavior and In Vivo<br>Exposure. Pharmaceutics, 2020, 12, 17.         | 4.5 | 25        |
| 64 | Structure and Dynamics of Apical Membrane Antigen 1 from <i>Plasmodium falciparum</i> FVO.<br>Biochemistry, 2014, 53, 7310-7320.                                                                                                                            | 2.5 | 23        |
| 65 | Investigation of novel ropinirole analogues: synthesis, pharmacological evaluation and<br>computational analysis of dopamine D2 receptor functionalized congeners and homobivalent ligands.<br>MedChemComm, 2014, 5, 891-898.                               | 3.4 | 23        |
| 66 | Synthesis, Biological Evaluation, and Utility of Fluorescent Ligands Targeting the μ-Opioid Receptor.<br>Journal of Medicinal Chemistry, 2015, 58, 9754-9767.                                                                                               | 6.4 | 23        |
| 67 | Positive Allosteric Modulation of the Muscarinic M <sub>1</sub> Receptor Improves Efficacy of<br>Antipsychotics in Mouse Clutamatergic Deficit Models of Behavior. Journal of Pharmacology and<br>Experimental Therapeutics, 2016, 359, 354-365.            | 2.5 | 21        |
| 68 | N6-substituted C5′-modified adenosines as A1 adenosine receptor agonists. Bioorganic and Medicinal Chemistry, 2008, 16, 1861-1873.                                                                                                                          | 3.0 | 20        |
| 69 | Development of Inhibitors of Plasmodium falciparum Apical Membrane Antigen 1 Based on Fragment<br>Screening. Australian Journal of Chemistry, 2013, 66, 1530.                                                                                               | 0.9 | 20        |
| 70 | Novel Irreversible Agonists Acting at the A <sub>1</sub> Adenosine Receptor. Journal of Medicinal Chemistry, 2016, 59, 11182-11194.                                                                                                                         | 6.4 | 20        |
| 71 | <scp>VCP</scp> 746, a novel A <sub>1</sub> adenosine receptor biased agonist, reduces hypertrophy in<br>a rat neonatal cardiac myocyte model. Clinical and Experimental Pharmacology and Physiology, 2016,<br>43, 976-982.                                  | 1.9 | 20        |
| 72 | Synthesis and Pharmacological Evaluation of Noscapine-Inspired 5-Substituted<br>Tetrahydroisoquinolines as Cytotoxic Agents. Journal of Medicinal Chemistry, 2018, 61, 8444-8456.                                                                           | 6.4 | 20        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                 | IF               | CITATIONS  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|
| 73 | A Thieno[2,3- <i>d</i> ]pyrimidine Scaffold Is a Novel Negative Allosteric Modulator of the Dopamine<br>D <sub>2</sub> Receptor. Journal of Medicinal Chemistry, 2019, 62, 174-206.                                                                                                                                                                                                     | 6.4              | 20         |
| 74 | Further investigations into the N-demethylation of oripavine using iron and stainless steel. Organic and Biomolecular Chemistry, 2011, 9, 1008-1011.                                                                                                                                                                                                                                    | 2.8              | 19         |
| 75 | Probing the binding site of novel selective positive allosteric modulators at the M1 muscarinic acetylcholine receptor. Biochemical Pharmacology, 2018, 154, 243-254.                                                                                                                                                                                                                   | 4.4              | 19         |
| 76 | Molecular Determinants of the Intrinsic Efficacy of the Antipsychotic Aripiprazole. ACS Chemical<br>Biology, 2019, 14, 1780-1792.                                                                                                                                                                                                                                                       | 3.4              | 19         |
| 77 | Fluorescently Labeled Morphine Derivatives for Bioimaging Studies. Journal of Medicinal Chemistry, 2018, 61, 1316-1329.                                                                                                                                                                                                                                                                 | 6.4              | 18         |
| 78 | Overcoming P-Glycoprotein–Mediated Drug Resistance with Noscapine Derivatives. Drug Metabolism<br>and Disposition, 2019, 47, 164-172.                                                                                                                                                                                                                                                   | 3.3              | 18         |
| 79 | Synthesis and Utility of 2â€Haloâ€ <i>O</i> <sup>6</sup> â€(benzotriazolâ€1â€yl)â€Functionalized Purine<br>Nucleosides. European Journal of Organic Chemistry, 2011, 2011, 1092-1098.                                                                                                                                                                                                   | 2.4              | 17         |
| 80 | Liquid Assisted Grinding for the N-Demethylation of Alkaloids. ACS Sustainable Chemistry and Engineering, 2018, 6, 10052-10057.                                                                                                                                                                                                                                                         | 6.7              | 17         |
| 81 | Subtle Modifications to the Indole-2-carboxamide Motif of the Negative Allosteric Modulator<br><i>N</i> -(( <i>trans</i> )-4-(2-(7-Cyano-3,4-dihydroisoquinolin-2(1 <i>H</i> )-yl)ethyl)cyclohexyl)-1 <i>H</i> -indole-<br>(SB269652) Yield Dramatic Changes in Pharmacological Activity at the Dopamine D <sub>2</sub><br>Receptor, Journal of Medicinal Chemistry, 2019, 62, 371-377. | 2-carboxa<br>6.4 | mide<br>17 |
| 82 | Novel Human Aminopeptidase N Inhibitors: Discovery and Optimization of Subsite Binding Interactions.<br>Journal of Medicinal Chemistry, 2019, 62, 7185-7209.                                                                                                                                                                                                                            | 6.4              | 17         |
| 83 | Probe dependence of allosteric enhancers on the binding affinity of adenosine A 1 â€receptor agonists<br>at rat and human A 1 â€receptors measured using N ano BRET. British Journal of Pharmacology, 2019, 176,<br>864-878.                                                                                                                                                            | 5.4              | 17         |
| 84 | The action of a negative allosteric modulator at the dopamine D2 receptor is dependent upon sodium ions. Scientific Reports, 2018, 8, 1208.                                                                                                                                                                                                                                             | 3.3              | 16         |
| 85 | Rapid Elaboration of Fragments into Leads by X-ray Crystallographic Screening of Parallel Chemical<br>Libraries (REFiL <sub>X</sub> ). Journal of Medicinal Chemistry, 2020, 63, 6863-6875.                                                                                                                                                                                             | 6.4              | 16         |
| 86 | Efficient Iron-Catalyzed N-Demethylation of Tertiary Amine-N-oxides under Oxidative Conditions.<br>Australian Journal of Chemistry, 2011, 64, 1515.                                                                                                                                                                                                                                     | 0.9              | 15         |
| 87 | A Multi-Step Continuous Flow Process for the N-Demethylation of Alkaloids. Australian Journal of Chemistry, 2013, 66, 178.                                                                                                                                                                                                                                                              | 0.9              | 15         |
| 88 | Guidelines for the Synthesis of Smallâ€Molecule Irreversible Probes Targeting G Proteinâ€Coupled<br>Receptors. ChemMedChem, 2016, 11, 1488-1498.                                                                                                                                                                                                                                        | 3.2              | 14         |
| 89 | Novel Fused Arylpyrimidinone Based Allosteric Modulators of the M <sub>1</sub> Muscarinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2016, 7, 647-661.                                                                                                                                                                                                                          | 3.5              | 14         |
| 90 | Synthesis and Pharmacological Evaluation of Heterocyclic Carboxamides: Positive Allosteric<br>Modulators of the M <sub>1</sub> Muscarinic Acetylcholine Receptor with Weak Agonist Activity and<br>Diverse Modulatory Profiles. Journal of Medicinal Chemistry, 2018, 61, 2875-2894.                                                                                                    | 6.4              | 14         |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Improved synthesis of 14-hydroxy opioid pharmaceuticals and intermediates. RSC Advances, 2012, 2, 11318.                                                                                                                                      | 3.6 | 13        |
| 92  | Utility of iron nanoparticles and a solution-phase iron species for the N-demethylation of alkaloids.<br>Green Chemistry, 2017, 19, 2587-2594.                                                                                                | 9.0 | 13        |
| 93  | Design, Synthesis, and Biological Evaluation of Tetra‣ubstituted Thiophenes as Inhibitors of p38α MAPK.<br>ChemistryOpen, 2015, 4, 56-64.                                                                                                     | 1.9 | 12        |
| 94  | Structure–Kinetic Profiling of Haloperidol Analogues at the Human Dopamine D <sub>2</sub><br>Receptor. Journal of Medicinal Chemistry, 2019, 62, 9488-9520.                                                                                   | 6.4 | 12        |
| 95  | API ionic liquids: probing the effect of counterion structure on physical form and lipid solubility. RSC Advances, 2020, 10, 12788-12799.                                                                                                     | 3.6 | 12        |
| 96  | Driving antimalarial design through understanding of target mechanism. Biochemical Society<br>Transactions, 2020, 48, 2067-2078.                                                                                                              | 3.4 | 12        |
| 97  | Synthesis, molecular structure, NMR spectroscopic and computational analysis of a selective adenosine A2A antagonist, ZM 241385. Structural Chemistry, 2013, 24, 1241-1251.                                                                   | 2.0 | 11        |
| 98  | Structure and substrate fingerprint of aminopeptidase P from <i>Plasmodium falciparum</i> .<br>Biochemical Journal, 2016, 473, 3189-3204.                                                                                                     | 3.7 | 11        |
| 99  | Discovery and development of 2-aminobenzimidazoles as potent antimalarials. European Journal of<br>Medicinal Chemistry, 2021, 221, 113518.                                                                                                    | 5.5 | 11        |
| 100 | Polonovski-Type N-Demethylation of N-Methyl Alkaloids Using Substituted Ferrocene Redox Catalysts.<br>Synthesis, 2012, 44, 2587-2594.                                                                                                         | 2.3 | 10        |
| 101 | Assessment of the Molecular Mechanisms of Action of Novel 4-Phenylpyridine-2-One and<br>6-Phenylpyrimidin-4-One Allosteric Modulators at the M <sub>1</sub> Muscarinic Acetylcholine<br>Receptors. Molecular Pharmacology, 2018, 94, 770-783. | 2.3 | 10        |
| 102 | Synthesis, functional and binding profile of (R)-apomorphine based homobivalent ligands targeting the dopamine D2 receptor. MedChemComm, 2013, 4, 1290.                                                                                       | 3.4 | 9         |
| 103 | Development of a Photoactivatable Allosteric Ligand for the M <sub>1</sub> Muscarinic Acetylcholine<br>Receptor. ACS Chemical Neuroscience, 2014, 5, 902-907.                                                                                 | 3.5 | 9         |
| 104 | Identification of the Binding Site of Apical Membrane Antigenâ€1 (AMA1) Inhibitors Using a Paramagnetic<br>Probe. ChemMedChem, 2019, 14, 603-612.                                                                                             | 3.2 | 9         |
| 105 | New irreversible adenosine A1 antagonists based on FSCPX. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3179-3182.                                                                                                                    | 2.2 | 8         |
| 106 | A critical evaluation of pyrrolo[2,3-d]pyrimidine-4-amines as Plasmodium falciparum apical membrane<br>antigen 1 (AMA1) inhibitors. MedChemComm, 2014, 5, 1500-1506.                                                                          | 3.4 | 8         |
| 107 | Solution NMR characterization of apical membrane antigen 1 and small molecule interactions as a basis for designing new antimalarials. Journal of Molecular Recognition, 2016, 29, 281-291.                                                   | 2.1 | 8         |
| 108 | Multivalent approaches and beyond: novel tools for the investigation of dopamine D <sub>2</sub><br>receptor pharmacology. Future Medicinal Chemistry, 2016, 8, 1349-1372.                                                                     | 2.3 | 8         |

| #   | Article                                                                                                                                                                                                                               | IF         | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 109 | Antimalarial drug discovery targeting apical membrane antigen 1. MedChemComm, 2017, 8, 13-20.                                                                                                                                         | 3.4        | 8         |
| 110 | Stabilising disproportionation of lipophilic ionic liquid salts in lipid-based formulations.<br>International Journal of Pharmaceutics, 2021, 597, 120292.                                                                            | 5.2        | 8         |
| 111 | A Novel Class ofNâ€6ulfonyl andNâ€6ulfamoyl Noscapine Derivatives that Promote Mitotic Arrest in<br>Cancer Cells. ChemMedChem, 2019, 14, 1968-1981.                                                                                   | 3.2        | 7         |
| 112 | 6-Phenylpyrimidin-4-ones as Positive Allosteric Modulators at the M <sub>1</sub> mAChR: The Determinants of Allosteric Activity. ACS Chemical Neuroscience, 2019, 10, 1099-1114.                                                      | 3.5        | 7         |
| 113 | Design, synthesis and evaluation of N6-substituted 2-aminoadenosine-5′-N-methylcarboxamides as A3 adenosine receptor agonists. MedChemComm, 2014, 5, 192-196.                                                                         | 3.4        | 6         |
| 114 | Subtle modifications to a thieno[2,3-d]pyrimidine scaffold yield negative allosteric modulators and agonists of the dopamine D2 receptor. European Journal of Medicinal Chemistry, 2019, 168, 474-490.                                | 5.5        | 6         |
| 115 | Development and Application of Subtype-Selective Fluorescent Antagonists for the Study of the<br>Human Adenosine A <sub>1</sub> Receptor in Living Cells. Journal of Medicinal Chemistry, 2021, 64,<br>6670-6695.                     | 6.4        | 6         |
| 116 | Lipophilic Salts and Lipid-Based Formulations: Enhancing the Oral Delivery of Octreotide.<br>Pharmaceutical Research, 2021, 38, 1125-1137.                                                                                            | 3.5        | 6         |
| 117 | 1,3â€Benzodioxoleâ€Modified Noscapine Analogues: Synthesis, Antiproliferative Activity, and<br>Tubulinâ€Bound Structure. ChemMedChem, 2021, 16, 2882-2894.                                                                            | 3.2        | 6         |
| 118 | Effect of a novel partial adenosine A1 receptor agonist VCP102 in reducing ischemic damage in the mouse heart. Drug Development Research, 2007, 68, 529-537.                                                                          | 2.9        | 5         |
| 119 | Synthesis and Biological Evaluation of Adenosines with Heterobicyclic and Polycyclic<br><i>N</i> <sup>6</sup> ‣ubstituents as Adenosine A <sub>1</sub> Receptor Agonists. ChemMedChem,<br>2012, 7, 1191-1201.                         | 3.2        | 5         |
| 120 | The effect of two selective A <sub>1</sub> â€receptor agonists and the bitopic ligand <scp>VCP746</scp><br>on heart rate and regional vascular conductance in conscious rats. British Journal of Pharmacology,<br>2020, 177, 346-359. | 5.4        | 5         |
| 121 | Development of Novel 4â€Arylpyridinâ€2â€one and 6â€Arylpyrimidinâ€4â€one Positive Allosteric Modulators of t<br>M 1 Muscarinic Acetylcholine Receptor. ChemMedChem, 2021, 16, 216-233.                                                | the<br>3.2 | 4         |
| 122 | Structural Features of Iperoxo–BQCA Muscarinic Acetylcholine Receptor Hybrid Ligands Determining<br>Subtype Selectivity and Efficacy. ACS Chemical Neuroscience, 2022, 13, 97-111.                                                    | 3.5        | 4         |
| 123 | NMR case study of ropinirole: concentration-dependent effects of nonexchangeable proton resonances. Magnetic Resonance in Chemistry, 2014, 52, 715-718.                                                                               | 1.9        | 3         |
| 124 | Biocompatible Cationic Lipoamino Acids as Counterions for Oral Administration of API-Ionic Liquids.<br>Pharmaceutical Research, 2022, 39, 2405-2419.                                                                                  | 3.5        | 3         |
| 125 | Enantioenriched Positive Allosteric Modulators Display Distinct Pharmacology at the Dopamine D1<br>Receptor. Molecules, 2021, 26, 3799.                                                                                               | 3.8        | 2         |
| 126 | Examining the Role of the Linker in Bitopic <i>N</i> <sup>6</sup> -Substituted Adenosine Derivatives<br>Acting as Biased Adenosine A <sub>1</sub> Receptor Agonists. Journal of Medicinal Chemistry, 0, , .                           | 6.4        | 1         |

| #   | Article                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | A Structureâ^'Activity Relationship Study of Novel Hydroxamic Acid Inhibitors around the S1 Subsite of<br>Human Aminopeptidase N. ChemMedChem, 2021, 16, 234-249. | 3.2 | 0         |
| 128 | Adenosine G Protein oupled Receptor Biased Agonism to Treat Ischemic Heart Disease. FASEB Journal,<br>2018, 32, 555.19.                                           | 0.5 | 0         |