Anita Rauch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8584230/publications.pdf

Version: 2024-02-01

256 papers 17,020 citations

65 h-index 19749 117 g-index

270 all docs

270 docs citations

270 times ranked

23224 citing authors

#	Article	IF	CITATIONS
1	Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet, The, 2012, 380, 1674-1682.	13.7	940
2	Germline KRAS mutations cause Noonan syndrome. Nature Genetics, 2006, 38, 331-336.	21.4	670
3	CNTNAP2 and NRXN1 Are Mutated in Autosomal-Recessive Pitt-Hopkins-like Mental Retardation and Determine the Level of a Common Synaptic Protein in Drosophila. American Journal of Human Genetics, 2009, 85, 655-666.	6.2	573
4	Transcription Factor E2-2 Is an Essential and Specific Regulator of Plasmacytoid Dendritic Cell Development. Cell, 2008, 135, 37-48.	28.9	567
5	Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nature Genetics, 2010, 42, 1021-1026.	21.4	431
6	Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature, 2011, 478, 97-102.	27.8	394
7	Mutations in the Pericentrin (<i>PCNT</i>) Gene Cause Primordial Dwarfism. Science, 2008, 319, 816-819.	12.6	370
8	Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. American Journal of Medical Genetics, Part A, 2006, 140A, 2063-2074.	1.2	343
9	Mutations in STRA6 Cause a Broad Spectrum of Malformations Including Anophthalmia, Congenital Heart Defects, Diaphragmatic Hernia, Alveolar Capillary Dysplasia, Lung Hypoplasia, and Mental Retardation. American Journal of Human Genetics, 2007, 80, 550-560.	6.2	316
10	Contribution of Global Rare Copy-Number Variants to the Risk of Sporadic Congenital Heart Disease. American Journal of Human Genetics, 2012, 91, 489-501.	6.2	272
11	Haploinsufficiency of TCF4 Causes Syndromal Mental Retardation with Intermittent Hyperventilation (Pitt-Hopkins Syndrome). American Journal of Human Genetics, 2007, 80, 994-1001.	6.2	261
12	De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nature Genetics, 2011, 43, 729-731.	21.4	236
13	Genotype-phenotype correlations in Noonan syndrome. Journal of Pediatrics, 2004, 144, 368-374.	1.8	227
14	Haploinsufficiency of ARID1B, a Member of the SWI/SNF-A Chromatin-Remodeling Complex, Is a Frequent Cause of Intellectual Disability. American Journal of Human Genetics, 2012, 90, 565-572.	6.2	225
15	The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. Journal of Medical Genetics, 2011, 48, 396-406.	3.2	220
16	CEP152 is a genome maintenance protein disrupted in Seckel syndrome. Nature Genetics, 2011, 43, 23-26.	21.4	201
17	Human TBX1 Missense Mutations Cause Gain of Function Resulting in the Same Phenotype as 22q11.2 Deletions. American Journal of Human Genetics, 2007, 80, 510-517.	6.2	195
18	Defining the Effect of the 16p11.2 Duplication on Cognition, Behavior, and Medical Comorbidities. JAMA Psychiatry, 2016, 73, 20.	11.0	195

#	Article	IF	CITATIONS
19	Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. Journal of Medical Genetics, 2009, 46, 598-606.	3.2	194
20	Clinical and molecular delineation of the 17q21.31 microdeletion syndrome. Journal of Medical Genetics, 2008, 45, 710-720.	3.2	191
21	A comprehensive molecular study on Coffin–Siris and Nicolaides–Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Human Molecular Genetics, 2013, 22, 5121-5135.	2.9	190
22	Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). European Heart Journal, 2011, 32, 1077-1088.	2.2	178
23	Induction, binding specificity and function of human ICOS. European Journal of Immunology, 2000, 30, 3707-3717.	2.9	166
24	Mutations in MEF2C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression. Human Mutation, 2010, 31, 722-733.	2.5	163
25	Mutations at the SALL4 locus on chromosome 20 result in a range of clinically overlapping phenotypes, including Okihiro syndrome, Holt-Oram syndrome, acro-renal-ocular syndrome, and patients previously reported to represent thalidomide embryopathy. Journal of Medical Genetics, 2003, 40, 473-478.	3.2	159
26	NEK1 Mutations Cause Short-Rib Polydactyly Syndrome Type Majewski. American Journal of Human Genetics, 2011, 88, 106-114.	6.2	151
27	De Novo Mutations in the Genome Organizer CTCF Cause Intellectual Disability. American Journal of Human Genetics, 2013, 93, 124-131.	6.2	151
28	Genotyping in 46 patients with tentative diagnosis of Treacher Collins syndrome revealed unexpected phenotypic variation. European Journal of Human Genetics, 2004, 12, 879-890.	2.8	149
29	Elastin: mutational spectrum in supravalvular aortic stenosis. European Journal of Human Genetics, 2000, 8, 955-963.	2.8	147
30	PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nature Genetics, 2015, 47, 647-653.	21.4	146
31	Guidelines for molecular karyotyping in constitutional genetic diagnosis. European Journal of Human Genetics, 2007, 15, 1105-1114.	2.8	144
32	Genetic and neurodevelopmental spectrum of <i>SYNGAP1 </i> epilepsy. Journal of Medical Genetics, 2016, 53, 511-522.	3.2	135
33	Altered $TGF\hat{l}^2$ signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. European Journal of Human Genetics, 2010, 18, 895-901.	2.8	132
34	SMCHD1 mutations associated with a rare muscular dystrophy can also cause isolated arhinia and Bosma arhinia microphthalmia syndrome. Nature Genetics, 2017, 49, 238-248.	21.4	131
35	First known microdeletion within the Wolf-Hirschhorn syndrome critical region refines genotype-phenotype correlation. American Journal of Medical Genetics Part A, 2001, 99, 338-342.	2.4	128
36	Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot. Journal of Medical Genetics, 2010, 47, 321-331.	3.2	126

#	Article	IF	CITATIONS
37	YY1 Haploinsufficiency Causes an Intellectual Disability Syndrome Featuring Transcriptional and Chromatin Dysfunction. American Journal of Human Genetics, 2017, 100, 907-925.	6.2	125
38	"Mowatâ€Wilson―syndrome with and without Hirschsprung disease is a distinct, recognizable multiple congenital anomaliesâ€mental retardation syndrome caused by mutations in the zinc finger homeo box 1B gene. American Journal of Medical Genetics Part A, 2002, 108, 177-181.	2.4	122
39	Clinical and Mutational Spectrum of Mowat–Wilson Syndrome. European Journal of Medical Genetics, 2005, 48, 97-111.	1.3	121
40	Systematic assessment of atypical deletions reveals genotype-phenotype correlation in 22q11.2. Journal of Medical Genetics, 2005, 42, 871-876.	3.2	118
41	Severely Incapacitating Mutations in Patients with Extreme Short Stature Identify RNA-Processing Endoribonuclease RMRP as an Essential Cell Growth Regulator. American Journal of Human Genetics, 2005, 77, 795-806.	6.2	117
42	SOS1 is the second most common Noonan gene but plays no major role in cardio-facio-cutaneous syndrome. Journal of Medical Genetics, 2007, 44, 651-656.	3.2	114
43	Expanding the clinical spectrum associated with defects in CNTNAP2 and NRXN1. BMC Medical Genetics, 2011, 12, 106.	2.1	109
44	Molecular karyotyping using an SNP array for genomewide genotyping. Journal of Medical Genetics, 2004, 41, 916-922.	3.2	106
45	Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls. Human Molecular Genetics, 2012, 21, 1513-1520.	2.9	101
46	Clinical relevance of systematic phenotyping and exome sequencing in patients with short stature. Genetics in Medicine, 2018, 20, 630-638.	2.4	101
47	A novel microdeletion syndrome involving 5q14.3-q15: clinical and molecular cytogenetic characterization of three patients. European Journal of Human Genetics, 2009, 17, 1592-1599.	2.8	96
48	A Novel 22q11.2 Microdeletion in DiGeorge Syndrome. American Journal of Human Genetics, 1999, 64, 659-667.	6.2	95
49	Disruption of the histone acetyltransferase MYST4 leads to a Noonan syndrome–like phenotype and hyperactivated MAPK signaling in humans and mice. Journal of Clinical Investigation, 2011, 121, 3479-3491.	8.2	89
50	Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features. Genetics in Medicine, 2016, 18, 788-795.	2.4	88
51	Further delineation of Pitt-Hopkins syndrome: phenotypic and genotypic description of 16 novel patients. Journal of Medical Genetics, 2008, 45, 738-744.	3.2	86
52	Nephrocalcinosis (Enamel Renal Syndrome) Caused by Autosomal Recessive FAM20A Mutations. Nephron Physiology, 2013, 122, 1-6.	1.2	84
53	Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. Journal of Cell Biology, 2009, 185, 1149-1157.	5 . 2	83
54	Disturbed Wnt Signalling due to a Mutation in CCDC88C Causes an Autosomal Recessive Non-Syndromic Hydrocephalus with Medial Diverticulum. Molecular Syndromology, 2010, 1, 99-112.	0.8	82

#	Article	IF	Citations
55	Genome-wide association study identifies loci on 12q24 and 13q32 associated with Tetralogy of Fallot. Human Molecular Genetics, 2013, 22, 1473-1481.	2.9	82
56	Deletion mapping on chromosome 10p and definition of a critical region for the second DiGeorge syndrome locus (DGS2). European Journal of Human Genetics, 1998, 6, 213-225.	2.8	81
57	A study of ten small supernumerary (marker) chromosomes identified by fluorescence <i>in situ</i> hybridization (FISH). Clinical Genetics, 1992, 42, 84-90.	2.0	81
58	Type and Level of RMRP Functional Impairment Predicts Phenotype in the Cartilage Hair Hypoplasia–Anauxetic Dysplasia Spectrum. American Journal of Human Genetics, 2007, 81, 519-529.	6.2	78
59	Crisponi Syndrome Is Caused by Mutations in the CRLF1 Gene and Is Allelic to Cold-Induced Sweating Syndrome Type 1. American Journal of Human Genetics, 2007, 80, 971-981.	6.2	76
60	Allelic Heterogeneity in the COH1 Gene Explains Clinical Variabilityin Cohen Syndrome. American Journal of Human Genetics, 2004, 75, 138-145.	6.2	72
61	Klinefelter syndrome and mediastinal germ cell tumors. American Journal of Medical Genetics, Part A, 2006, 140A, 471-481.	1.2	72
62	Molecular karyotyping in patients with mental retardation using 100K single-nucleotide polymorphism arrays. Journal of Medical Genetics, 2007, 44, 629-636.	3.2	72
63	The clinical significance of small copy number variants in neurodevelopmental disorders. Journal of Medical Genetics, 2014, 51, 677-688.	3.2	72
64	De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females. European Journal of Human Genetics, 2015, 23, 602-609.	2.8	72
65	Dosage-Dependent Severity of the Phenotype in Patients with Mental Retardation Due to a Recurrent Copy-Number Gain at Xq28 Mediated by an Unusual Recombination. American Journal of Human Genetics, 2009, 85, 809-822.	6.2	70
66	Need for high-resolution Genetic Analysis in iPSC: Results and Lessons from the ForIPS Consortium. Scientific Reports, 2018, 8, 17201.	3.3	70
67	Biallelic UFM1 and UFC1 mutations expand the essential role of ufmylation in brain development. Brain, 2018, 141, 1934-1945.	7.6	70
68	<i>FOXP2</i> variants in 14 individuals with developmental speech and language disorders broaden the mutational and clinical spectrum. Journal of Medical Genetics, 2017, 54, 64-72.	3.2	67
69	Phenotype and genotype of 87 patients with Mowat–Wilson syndrome and recommendations for care. Genetics in Medicine, 2018, 20, 965-975.	2.4	67
70	Confirmation of mutations in <i>PROSC</i> es a novel cause of vitamin B _₆ -dependent epilepsy. Journal of Medical Genetics, 2017, 54, 809-814.	3.2	66
71	Incidence and significance of $22q11.2$ hemizygosity in patients with interrupted aortic arch. , $1998, 78, 322-331.$		62
72	Characterisation of deletions of the ZFHX1B region and genotype-phenotype analysis in Mowat-Wilson syndrome. Journal of Medical Genetics, 2003, 40, 601-605.	3.2	61

#	Article	IF	CITATIONS
73	Systematic survey of variants in TBX1 in non-syndromic tetralogy of Fallot identifies a novel 57 base pair deletion that reduces transcriptional activity but finds no evidence for association with common variants. Heart, 2010, 96, 1651-1655.	2.9	61
74	Rare Copy Number Variants Are a Common Cause of Short Stature. PLoS Genetics, 2013, 9, e1003365.	3.5	60
75	The face of Noonan syndrome: Does phenotype predict genotype. American Journal of Medical Genetics, Part A, 2010, 152A, 1960-1966.	1.2	59
76	Mutations Affecting the SAND Domain of DEAF1 Cause Intellectual Disability with Severe Speech Impairment and Behavioral Problems. American Journal of Human Genetics, 2014, 94, 649-661.	6.2	59
77	Hirschsprung disease, mental retardation, characteristic facial features, and mutation in the gene ⟨i>ZFHX1B⟨ i> (⟨i>SIP1⟨ i>): Confirmation of the Mowatâ€Wilson syndrome. American Journal of Medical Genetics Part A, 2003, 116A, 385-388.	2.4	58
78	Laterality of the aortic arch and anomalies of the subclavian artery?reliable indicators for 22q11.2 deletion syndromes?. European Journal of Pediatrics, 2004, 163, 642-5.	2.7	58
79	In-Frame Deletion and Missense Mutations of the C-Terminal Helicase Domain of <i>SMARCA2</i> in Three Patients with Nicolaides-Baraitser Syndrome. Molecular Syndromology, 2011, 2, 237-244.	0.8	58
80	A new quantitative PCR multiplex assay for rapid analysis of chromosome 17p11.2-12 duplications and deletions leading to HMSN/HNPP. European Journal of Human Genetics, 2003, 11, 170-178.	2.8	57
81	Dosage changes of MED13L further delineate its role in congenital heart defects and intellectual disability. European Journal of Human Genetics, 2013, 21, 1100-1104.	2.8	57
82	Elucidation of the phenotypic spectrum and genetic landscape in primary and secondary microcephaly. Genetics in Medicine, 2019, 21, 2043-2058.	2.4	57
83	Highly variable cutis laxa resulting from a dominant splicing mutation of the elastin gene. American Journal of Medical Genetics, Part A, 2008, 146A, 977-983.	1.2	56
84	Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy. American Journal of Human Genetics, 2019, 104, 1210-1222.	6.2	56
85	A Dual Phenotype of Periventricular Nodular Heterotopia and Frontometaphyseal Dysplasia in One Patient Caused by a Single FLNA Mutation Leading to Two Functionally Different Aberrant Transcripts. American Journal of Human Genetics, 2004, 74, 731-737.	6.2	55
86	Independent <i>NF1</i> and <i>PTPN11</i> mutations in a family with neurofibromatosisâ€Noonan syndrome. American Journal of Medical Genetics, Part A, 2009, 149A, 1263-1267.	1.2	55
87	Mutations in <i> <scp>CDK</scp> 5 <scp>RAP</scp> 2 </i> cause Seckel syndrome. Molecular Genetics & amp; Genomic Medicine, 2015, 3, 467-480.	1.2	55
88	Clinical and molecular cytogenetic observations in three cases of "trisomy 12p syndrome― American Journal of Medical Genetics Part A, 1996, 63, 243-249.	2.4	54
89	A Potential Contributory Role for Ciliary Dysfunction in the 16p11.2 600 kb BP4-BP5 Pathology. American Journal of Human Genetics, 2015, 96, 784-796.	6.2	53
90	Autosomal recessive primary microcephaly due to <i>ASPM</i> mutations: An update. Human Mutation, 2018, 39, 319-332.	2.5	53

#	Article	IF	Citations
91	The role of recessive inheritance in early-onset epileptic encephalopathies: a combined whole-exome sequencing and copy number study. European Journal of Human Genetics, 2019, 27, 408-421.	2.8	52
92	The MEF2C-Related and 5q14.3q15 Microdeletion Syndrome. Molecular Syndromology, 2011, 2, 164-170.	0.8	51
93	Lethal cutis laxa with contractural arachnodactyly, overgrowth and soft tissue bleeding due to a novel homozygous <i>fibulinâ€4</i> gene mutation. Clinical Genetics, 2009, 76, 276-281.	2.0	50
94	A new face of Borjeson–Forssman–Lehmann syndrome? De novo mutations in <i>PHF6</i> i>in seven females with a distinct phenotype. Journal of Medical Genetics, 2013, 50, 838-847.	3.2	50
95	Mutations in CRADD Result in Reduced Caspase-2-Mediated Neuronal Apoptosis and Cause Megalencephaly with a Rare Lissencephaly Variant. American Journal of Human Genetics, 2016, 99, 1117-1129.	6.2	50
96	Partial deletion of the critical 1.5 Mb interval in Williams-Beuren syndrome. Journal of Medical Genetics, 2003, 40, 99e-99.	3.2	49
97	De Novo Variants in the F-Box Protein FBXO11 in 20 Individuals with a Variable Neurodevelopmental Disorder. American Journal of Human Genetics, 2018, 103, 305-316.	6.2	48
98	SPEN haploinsufficiency causes a neurodevelopmental disorder overlapping proximal 1p36 deletion syndrome with an episignature of X chromosomes in females. American Journal of Human Genetics, 2021, 108, 502-516.	6.2	48
99	Intragenic <i>KANSL1</i> mutations and chromosome 17q21.31 deletions: broadening the clinical spectrum and genotype–phenotype correlations in a large cohort of patients. Journal of Medical Genetics, 2015, 52, 804-814.	3.2	47
100	Spatially clustering de novo variants in CYFIP2, encoding the cytoplasmic FMRP interacting protein 2, cause intellectual disability and seizures. European Journal of Human Genetics, 2019, 27, 747-759.	2.8	47
101	Mosaicism for the Charcot-Marie-Tooth disease type 1A duplication suggests somatic reversion. Human Genetics, 1996, 98, 22-28.	3.8	46
102	A variable combination of features of Noonan syndrome and neurofibromatosis type I are caused by mutations in the <i>NF1</i> gene. American Journal of Medical Genetics, Part A, 2006, 140A, 2749-2756.	1.2	46
103	The molecular basis of the cartilage-hair hypoplasia–anauxetic dysplasia spectrum. Best Practice and Research in Clinical Endocrinology and Metabolism, 2011, 25, 131-142.	4.7	46
104	Monosomy 22q11 in patients with pulmonary atresia, ventricular septal defect, and major aortopulmonary collateral arteries. Heart, 1998, 79, 180-185.	2.9	45
105	Monoallelic BMP2 Variants Predicted to Result in Haploinsufficiency Cause Craniofacial, Skeletal, and Cardiac Features Overlapping Those of 20p12 Deletions. American Journal of Human Genetics, 2017, 101, 985-994.	6.2	44
106	The PDAC syndrome (pulmonary hypoplasia/agenesis, diaphragmatic hernia/eventration,) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T 1.2	rf 50 152 Td (43
107	inheritance. American Journal of Medical Genetics, Part A, 2007, 143A, 1268-1281. Microarrays in prenatal diagnosis. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2017, 42, 53-63.	2.8	43
108	Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Molecular Psychiatry, 2021, 26, 2013-2024.	7.9	43

#	Article	IF	CITATIONS
109	Mesomelia-Synostoses Syndrome Results from Deletion of SULF1 and SLCO5A1 Genes at 8q13. American Journal of Human Genetics, 2010, 87, 95-100.	6.2	42
110	Highâ€resolution chromosomal microarrays in prenatal diagnosis significantly increase diagnostic power. Prenatal Diagnosis, 2014, 34, 525-533.	2.3	42
111	Further corroboration of distinct functional features in SCN2A variants causing intellectual disability or epileptic phenotypes. Molecular Medicine, 2019, 25, 6.	4.4	42
112	Partial Loss of USP9X Function Leads to a Male Neurodevelopmental and Behavioral Disorder Converging on Transforming Growth Factor \hat{I}^2 Signaling. Biological Psychiatry, 2020, 87, 100-112.	1.3	42
113	Ichthyosis follicularis, alopecia, and photophobia (IFAP) syndrome: Clinical and neuropathological observations in a 33-year-old man. , 1998, 78, 371-377.		40
114	The shortest of the short: Pericentrin mutations and beyond. Best Practice and Research in Clinical Endocrinology and Metabolism, 2011, 25, 125-130.	4.7	40
115	Plasma metabolomics reveals a diagnostic metabolic fingerprint for mitochondrial aconitase (ACO2) deficiency. PLoS ONE, 2017, 12, e0176363.	2.5	40
116	Neocentric small supernumerary marker chromosomes (sSMC) $\hat{a}\in$ three more cases and review of the literature. Cytogenetic and Genome Research, 2007, 118, 31-37.	1.1	37
117	Analysis of an interstitial deletion in a patient with Kallmann syndrome, Xâ€linked ichthyosis and mental retardation. Clinical Genetics, 1998, 54, 45-51.	2.0	37
118	The smallest teeth in the world are caused by mutations in the <i>PCNT</i> gene. American Journal of Medical Genetics, Part A, 2011, 155, 1398-1403.	1.2	37
119	Variants in <i>CUL4B</i> ere Associated with Cerebral Malformations. Human Mutation, 2015, 36, 106-117.	2.5	37
120	Mowat-Wilson syndrome and mutation in the zinc finger homeo box 1B gene: a well defined clinical entity. Journal of Medical Genetics, 2004, 41, 16e-16.	3.2	36
121	Molecular Diversity and Associated Phenotypic Spectrum of Germline <i>CBL</i> Mutations. Human Mutation, 2015, 36, 787-796.	2.5	36
122	Autosomal-Dominant Hypertension With Type E Brachydactyly Is Caused by Rearrangement on the Short Arm of Chromosome 12. Hypertension, 2004, 43, 471-476.	2.7	35
123	Pulmonary hypoplasia–diaphragmatic hernia–anophthalmia–cardiac defect (PDAC) syndrome due to <i>STRA6</i> mutations—What are the minimal criteria?. American Journal of Medical Genetics, Part A, 2009, 149A, 2457-2463.	1.2	35
124	Goltz–Gorlin (focal dermal hypoplasia) and the microphthalmia with linear skin defects (MLS) syndrome: no evidence of genetic overlap. European Journal of Human Genetics, 2009, 17, 1207-1215.	2.8	35
125	<i>STAG1</i> mutations cause a novel cohesinopathy characterised by unspecific syndromic intellectual disability. Journal of Medical Genetics, 2017, 54, 479-488.	3.2	35
126	A recurrent germline mutation in the <i>PIGA</i> gene causes Simpsonâ€Golabiâ€Behmel syndrome type 2. American Journal of Medical Genetics, Part A, 2016, 170, 392-402.	1.2	34

#	Article	IF	CITATIONS
127	Genotype-phenotype evaluation of MED13L defects in the light of a novel truncating and a recurrent missense mutation. European Journal of Medical Genetics, 2017, 60, 451-464.	1.3	34
128	De novo truncating variants in the intronless IRF2BPL are responsible for developmental epileptic encephalopathy. Genetics in Medicine, 2019, 21, 1008-1014.	2.4	34
129	Disruption of RFX family transcription factors causes autism, attention-deficit/hyperactivity disorder, intellectual disability, and dysregulated behavior. Genetics in Medicine, 2021, 23, 1028-1040.	2.4	34
130	N ⁸ â€acetylspermidine as a potential plasma biomarker for Snyderâ€Robinson syndrome identified by clinical metabolomics. Journal of Inherited Metabolic Disease, 2016, 39, 131-137.	3.6	33
131	A novel 5q35.3 subtelomeric deletion syndrome. American Journal of Medical Genetics, Part A, 2003, 121A, 1-8.	1.2	32
132	AtypicalZFHX1B mutation associated with a mild Mowat–Wilson syndrome phenotype. American Journal of Medical Genetics, Part A, 2006, 140A, 869-872.	1.2	32
133	Unmasking of a Recessive SCARF2 Mutation by a 22q11.12 de novo Deletion in a Patient with Van den Ende-Gupta Syndrome. Molecular Syndromology, 2010, 1, 239-245.	0.8	32
134	New insights into the clinical and molecular spectrum of the novel CYFIP2-related neurodevelopmental disorder and impairment of the WRC-mediated actin dynamics. Genetics in Medicine, 2021, 23, 543-554.	2.4	32
135	"Mowat-Wilson" syndrome with and without Hirschsprung disease is a distinct, recognizable multiple congenital anomalies-mental retardation syndrome caused by mutations in the zinc finger homeo box 1B gene. American Journal of Medical Genetics Part A, 2002, 108, 177-81.	2.4	32
136	A missense mutation in the ZFHX1B gene associated with an atypical Mowat–Wilson syndrome phenotype. American Journal of Medical Genetics, Part A, 2006, 140A, 1223-1227.	1.2	31
137	Novel missense, insertion and deletion mutations in the neurotrophic tyrosine kinase receptor type 1 gene (NTRK1) associated with congenital insensitivity to pain with anhidrosis. Neuromuscular Disorders, 2008, 18, 159-166.	0.6	31
138	Somatic mosaicism in a mother of two children with Pitt–Hopkins syndrome. Clinical Genetics, 2013, 83, 73-77.	2.0	31
139	Association Between C677T Polymorphism of Methylene Tetrahydrofolate Reductase and Congenital Heart Disease. Circulation: Cardiovascular Genetics, 2013, 6, 347-353.	5.1	31
140	Facial phenotype allows diagnosis of Mowat-Wilson syndrome in the absence of hirschsprung disease. American Journal of Medical Genetics Part A, 2004, 124A, 102-104.	2.4	30
141	Severe skeletal dysplasia caused by undiagnosed hypothyroidism. European Journal of Medical Genetics, 2007, 50, 209-215.	1.3	30
142	Infantile Epileptic Encephalopathy, Transient Choreoathetotic Movements, and Hypersomnia due to a De Novo Missense Mutation in the SCN2A Gene. Neuropediatrics, 2014, 45, 261-264.	0.6	30
143	De Novo Pathogenic Variants in N-cadherin Cause a Syndromic Neurodevelopmental Disorder with Corpus Callosum, Axon, Cardiac, Ocular, and Genital Defects. American Journal of Human Genetics, 2019, 105, 854-868.	6.2	29
144	Balanced translocation in a patient with craniosynostosis disrupts the SOX6 gene and an evolutionarily conserved non-transcribed region. Journal of Medical Genetics, 2006, 43, 534-540.	3.2	28

#	Article	IF	Citations
145	Two novel mutations in the insulin binding subunit of the insulin receptor gene without insulin binding impairment in a patient with Rabson–Mendenhall syndrome. Molecular Genetics and Metabolism, 2008, 94, 356-362.	1.1	28
146	Novel <i>KIF7 </i> mutations extend the phenotypic spectrum of acrocallosal syndrome. Journal of Medical Genetics, 2012, 49, 713-720.	3.2	28
147	<i>LETM1</i> haploinsufficiency causes mitochondrial defects in Wolf-Hirschhorn syndrome patient cells: implications for dissecting underlying pathomechanisms in this condition. DMM Disease Models and Mechanisms, 2014, 7, 535-45.	2.4	26
148	Mutations in XRCC4 cause primary microcephaly, short stature and increased genomic instability. Human Molecular Genetics, 2015, 24, 3708-17.	2.9	26
149	Inversion Region for Hypertension and Brachydactyly on Chromosome 12p Features Multiple Splicing and Noncoding RNA. Hypertension, 2008, 51, 426-431.	2.7	25
150	Macrocerebellum: Significance and Pathogenic Considerations. Cerebellum, 2012, 11, 1026-1036.	2.5	25
151	A newly recognized 13q12.3 microdeletion syndrome characterized by intellectual disability, microcephaly, and eczema/atopic dermatitis encompassing the <i>HMGB1</i> and <i>KATNAL1</i> genes. American Journal of Medical Genetics, Part A, 2014, 164, 1277-1283.	1.2	25
152	Hydrops, fetal pleural effusions and chylothorax in three patients with <i>CBL</i> mutations. American Journal of Medical Genetics, Part A, 2015, 167, 394-399.	1.2	24
153	Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype. Genetics in Medicine, 2021, 23, 1474-1483.	2.4	24
154	Monosomy 1p36 ??? a recently delineated, clinically recognizable syndrome. Clinical Dysmorphology, 2002, 11, 43-48.	0.3	23
155	Mother and daughter with a terminal Xp deletion: Implication of chromosomal mosaicism and X-inactivation in the high clinical variability of the microphthalmia with linear skin defects (MLS) syndrome. European Journal of Medical Genetics, 2007, 50, 421-431.	1.3	23
156	Clinical and experimental evidence suggest a link between KIF7 and C5orf42-related ciliopathies through Sonic Hedgehog signaling. European Journal of Human Genetics, 2018, 26, 197-209.	2.8	23
157	The broad phenotypic spectrum of PPP2R1A-related neurodevelopmental disorders correlates with the degree of biochemical dysfunction. Genetics in Medicine, 2021, 23, 352-362.	2.4	23
158	Clinical relevance of monosomy $22q11.2$ in children with pulmonary atresia and ventricular septal defect. European Journal of Pediatrics, 1999, 158, 302-307.	2.7	22
159	Cervical origin of the subclavian artery as a specific marker for monosomy 22q11. American Journal of Cardiology, 2002, 89, 481-484.	1.6	22
160	Assessment of association between variants and haplotypes of the remaining TBX1 gene and manifestations of congenital heart defects in 22q11.2 deletion patients. Journal of Medical Genetics, 2004, 41, e40-e40.	3.2	22
161	Further delineation of genotype–phenotype correlation in homozygous 2p21 deletion syndromes: First description of patients without cystinuria. American Journal of Medical Genetics, Part A, 2013, 161, 1853-1859.	1.2	22
162	Clinical decisions for treatment of different staged bladder cancer based on multitarget fluorescence in situ hybridization assays?. World Journal of Urology, 2006, 24, 418-422.	2.2	21

#	Article	IF	CITATIONS
163	A severe congenital myasthenic syndrome with "dropped head―caused by novel ⟨i⟩MUSK⟨ i⟩ mutations. Muscle and Nerve, 2015, 52, 668-673.	2.2	21
164	High resolution chromosomal microarray analysis in paediatric obsessive-compulsive disorder. BMC Medical Genomics, 2017, 10, 68.	1.5	21
165	Clinical, cytogenetic and molecular characterization of a patient with combined succinic semialdehyde dehydrogenase deficiency and incomplete WAGR syndrome with obesity. Molecular Genetics and Metabolism, 2006, 88, 256-260.	1.1	20
166	A male infant with a 9.6 Mb terminal Xp deletion including theOA1 locus: Limit of viability of Xp deletions in males. American Journal of Medical Genetics, Part A, 2007, 143A, 135-141.	1.2	20
167	The value of plasma vitamin B ₆ profiles in early onset epileptic encephalopathies. Journal of Inherited Metabolic Disease, 2016, 39, 733-741.	3.6	19
168	Deleterious Variation in BRSK2 Associates with a Neurodevelopmental Disorder. American Journal of Human Genetics, 2019, 104, 701-708.	6.2	19
169	Novel morphological and genetic features of fumarate hydratase deficient renal cell carcinoma in <scp>HLRCC </scp> syndrome patients with a tailored therapeutic approach. Genes Chromosomes and Cancer, 2020, 59, 611-619.	2.8	19
170	Behavior phenotype of FG syndrome: Cognition, personality, and behavior in eleven affected boys. American Journal of Medical Genetics Part A, 2000, 97, 112-118.	2.4	18
171	Growth of heterokaryotic monozygotic twins discordant for Ullrich–Turner syndrome during the first years of life. American Journal of Medical Genetics Part A, 2004, 126A, 78-83.	2.4	18
172	Clinical and genetic distinction of Schimke immunoâ€osseous dysplasia and cartilageâ€hair hypoplasia. American Journal of Medical Genetics, Part A, 2008, 146A, 2013-2017.	1.2	18
173	Bi-allelic TMEM94 Truncating Variants Are Associated with Neurodevelopmental Delay, Congenital Heart Defects, and Distinct Facial Dysmorphism. American Journal of Human Genetics, 2018, 103, 948-967.	6.2	18
174	Missense and truncating variants in CHD5 in a dominant neurodevelopmental disorder with intellectual disability, behavioral disturbances, and epilepsy. Human Genetics, 2021, 140, 1109-1120.	3.8	18
175	A de novo 7.6Mb tandem duplication of 14q32.2-qter associated with primordial short stature with neurosecretory growth hormone dysfunction, distinct facial anomalies and mild developmental delay. European Journal of Medical Genetics, 2008, 51, 362-367.	1.3	17
176	Microcephalic osteodysplastic primordial dwarfism type II (MOPD II) with multiple vascular complications misdiagnosed as Dubowitz syndrome. European Journal of Pediatrics, 2014, 173, 1253-1256.	2.7	17
177	A clinical scoring system for congenital contractural arachnodactyly. Genetics in Medicine, 2020, 22, 124-131.	2.4	17
178	<i>CDK5RAP2</i> primary microcephaly is associated with hypothalamic, retinal and cochlear developmental defects. Journal of Medical Genetics, 2020, 57, 389-399.	3.2	17
179	Swiss newborn screening for severe T and B cell deficiency with a combined TREC/KREC assay – management recommendations. Swiss Medical Weekly, 2020, 150, w20254.	1.6	17
180	Monozygotic twins concordant for Cayler syndrome. , 1998, 75, 113-117.		16

#	Article	IF	CITATIONS
181	Pulmonary artery sling and congenital tracheal stenosis in another patient with Mowat–Wilson syndrome. American Journal of Medical Genetics, Part A, 2007, 143A, 1528-1530.	1.2	16
182	Prenatal diagnosis of <i>HNF1B</i> àêessociated renal cysts: Is there a need to differentiate intragenic variants from 17q12 microdeletion syndrome?. Prenatal Diagnosis, 2019, 39, 1136-1147.	2.3	16
183	DLG4-related synaptopathy: a new rare brain disorder. Genetics in Medicine, 2021, 23, 888-899.	2.4	16
184	Genitourinary Anomalies in Mowat-Wilson Syndrome with Deletion/Mutation in the Zinc Finger Homeo Box 1B Gene (ZFHX1B). Hormone Research in Paediatrics, 2005, 63, 187-192.	1.8	15
185	Deletion or triplication of the α3(VI) collagen gene in three patients with 2q37 chromosome aberrations and symptoms of collagenâ€related disorders. Clinical Genetics, 1996, 49, 279-285.	2.0	15
186	Noninvasive prenatal testing: more caution in counseling is needed in high risk pregnancies with ultrasound abnormalities. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2016, 200, 72-75.	1.1	15
187	True fetal mosaicism of an isochromosome of the long arm of a chromosome 20: the dilemma persists. , 1997, 17, 1171-1175.		14
188	Search for somatic 22q11.2 deletions in patients with conotruncal heart defects. American Journal of Medical Genetics Part A, 2004, 124A, 165-169.	2.4	14
189	Reply to Hochstenbach et al. European Journal of Human Genetics, 2006, 14, 1063-1064.	2.8	14
190	Chromosome 5q subtelomeric deletion syndrome. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2007, 145C, 372-376.	1.6	14
191	Severe clinical course of Hirschsprung disease in a Mowat-Wilson syndrome patient. Journal of Applied Genetics, 2010, 51, 111-113.	1.9	14
192	Dysmorphology at a distance: results of a web-based diagnostic service. European Journal of Human Genetics, 2014, 22, 327-332.	2.8	14
193	<scp><i>MED27</i></scp> Variants Cause Developmental Delay, Dystonia, and Cerebellar Hypoplasia. Annals of Neurology, 2021, 89, 828-833.	5.3	14
194	Platelet defects in congenital variant of Rett syndrome patients with FOXG1 mutations or reduced expression due to a position effect at 14q12. European Journal of Human Genetics, 2013, 21, 1349-1355.	2.8	13
195	<i>CSNK2B</i> : A broad spectrum of neurodevelopmental disability and epilepsy severity. Epilepsia, 2021, 62, e103-e109.	5.1	13
196	Disruption of ST5 is associated with mental retardation and multiple congenital anomalies. Journal of Medical Genetics, 2010, 47, 91-98.	3.2	12
197	Genome-wide copy number profiling using a 100K SNP array reveals novel disease-related genes BORIS and TSHZ1 in juvenile angiofibroma. International Journal of Oncology, 2011, 39, 1143-51.	3.3	12
198	Confirmation of Ogden syndrome as an Xâ€linked recessive fatal disorder due to a recurrent <scp>NAA10</scp> variant and review of the literature. American Journal of Medical Genetics, Part A, 2021, 185, 2546-2560.	1.2	12

#	Article	IF	Citations
199	Incidence and significance of 22q11.2 hemizygosity in patients with interrupted aortic arch. American Journal of Medical Genetics Part A, 1998, 78, 322-31.	2.4	12
200	The HHID syndrome of hypertrichosis, hyperkeratosis, abnormal corpus callosum, intellectual disability, and minor anomalies is caused by mutations in <i>ARID1B</i> . American Journal of Medical Genetics, Part A, 2017, 173, 1440-1443.	1.2	11
201	Clinical and functional characterization of two novel <i>ZBTB20</i> mutations causing Primrose syndrome. Human Mutation, 2018, 39, 959-964.	2.5	11
202	Evolutionary conserved networks of human height identify multiple Mendelian causes of short stature. European Journal of Human Genetics, 2019, 27, 1061-1071.	2.8	11
203	Bi-allelic Pathogenic Variants in HS2ST1 Cause a Syndrome Characterized by Developmental Delay and Corpus Callosum, Skeletal, and Renal Abnormalities. American Journal of Human Genetics, 2020, 107, 1044-1061.	6.2	11
204	Exclusion of TCOF1 mutations in a case of bilateral Goldenhar syndrome and one familial case of microtia with meatal atresia. Clinical Dysmorphology, 2005, 14, 67-71.	0.3	10
205	7ÂMb de novo deletion within 8q21 in a patient with distal arthrogryposis type 2B (DA2B). European Journal of Medical Genetics, 2011, 54, e495-e500.	1.3	10
206	Novel <i>STRA6</i> null mutations in the original family described with Matthew–Wood syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 134-138.	1.2	10
207	Expanding the phenotype: Four new cases and hope for treatment in <scp>Bachmannâ€Bupp</scp> syndrome. American Journal of Medical Genetics, Part A, 2021, 185, 3485-3493.	1.2	10
208	Microdeletions of chromosome 7p21, including TWIST1, associated with significant microcephaly, facial dysmorphism, and short stature. European Journal of Medical Genetics, 2011, 54, 256-261.	1.3	9
209	Biallelic <i>SEMA3A</i> defects cause a novel type of syndromic short stature. American Journal of Medical Genetics, Part A, 2013, 161, 2880-2889.	1.2	9
210	Surprisingly good outcome in antenatal diagnosis of severe hydrocephalus related to CCDC88C deficiency. European Journal of Medical Genetics, 2018, 61, 189-196.	1.3	9
211	CUGC for Simpson-Golabi-Behmel syndrome (SGBS). European Journal of Human Genetics, 2019, 27, 663-668.	2.8	9
212	Human COQ4 deficiency: delineating the clinical, metabolic and neuroimaging phenotypes. Journal of Medical Genetics, 2022, 59, 878-887.	3.2	9
213	Diagnosis and treatment of pulmonary atresia and ventricular septal defect. Progress in Pediatric Cardiology, 1998, 9, 113-118.	0.4	8
214	Defective sexual development in an infant with 46, XY, der(9)t(8;9)(q23.1;p23)mat. European Journal of Pediatrics, 1999, 158, 213-216.	2.7	8
215	Achondrogenesis Type IA (Houston-Harris): A Still-Unresolved Molecular Phenotype. Pediatric and Developmental Pathology, 2007, 10, 328-334.	1.0	8
216	A 15Mb duplication of 6q24.1–q25.3 associated with typical but milder features of the duplication 6q syndrome. European Journal of Medical Genetics, 2008, 51, 358-361.	1.3	8

#	Article	IF	CITATIONS
217	Severe reaction to radiotherapy provoked by hypomorphic germline mutations in <i>ATM</i> (ataxia–telangiectasia mutated gene). Molecular Genetics & Enomic Medicine, 2020, 8, e1409.	1.2	8
218	Spectrum of arterial obstructions caused by one elastin gene point mutation. European Journal of Pediatrics, 2003, 162, 53-54.	2.7	7
219	Brachydactyly in a child with duplicationâ€deficiency subsequent to t(15;20)(q25.2;p12.2)mat. Candidate regions on one or both chromosomes?. Clinical Genetics, 1997, 51, 357-360.	2.0	7
220	6.7 Mb interstitial duplication in chromosome band 11q24.2q25 associated with infertility, minor dysmorphic features and normal psychomotor development. European Journal of Medical Genetics, 2008, 51, 666-671.	1.3	7
221	Genome-wide non-invasive prenatal testing in single- and multiple-pregnancies at any risk: Identification of maternal polymorphisms to reduce the number of unnecessary invasive confirmation testing. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2020, 252, 19-29.	1.1	7
222	Insight Into the Ontogeny of GnRH Neurons From Patients Born Without a Nose. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1538-1551.	3 . 6	7
223	Rare variants in KDR, encoding VEGF Receptor 2, are associated with tetralogy of Fallot. Genetics in Medicine, 2021, 23, 1952-1960.	2.4	7
224	Clinical utility gene card for: DiGeorge syndrome, velocardiofacial syndrome, Shprintzen syndrome, chromosome 22q11.2 deletion syndrome (22q11.2, TBX1). European Journal of Human Genetics, 2010, 18, 1071-1071.	2.8	6
225	Mild clinical phenotype and subtle radiographic findings in an infant with cartilage-hair hypoplasia. Turkish Journal of Pediatrics, 2009, 51, 493-6.	0.6	6
226	Hypoparathyroidism in conotruncal heart defects. European Journal of Pediatrics, 2002, 161, 208-211.	2.7	5
227	9 Mb deletion including chromosome band 3q24 associated with unsuspicious facial gestalt, persistent ductus omphaloentericus, mild mental retardation and tic. European Journal of Medical Genetics, 2005, 48, 360-362.	1.3	5
228	Spontaneous Development and Rupture of Pulmonary Artery Aneurysm: A Rare Complication in an Infant with Peripheral Pulmonary Artery Stenoses Due to Mutation of the Elastin Gene. Pediatric Cardiology, 2008, 29, 438-441.	1.3	5
229	Familial short stature due to a 5q22.1–q23.2 duplication refines the 5q duplication spectrum. European Journal of Medical Genetics, 2011, 54, e521-e524.	1.3	5
230	Clinical utility gene card for: Mowat–Wilson syndrome. European Journal of Human Genetics, 2011, 19, 4-4.	2.8	5
231	Low-Level Chromosomal Mosaicism in Neurodevelopmental Disorders. Molecular Syndromology, 2017, 8, 266-271.	0.8	5
232	High-resolution chromosomal microarrayÂanalysis for copy-number variations in high-functioning autism reveals large aberration typical for intellectual disability. Journal of Neural Transmission, 2020, 127, 81-94.	2.8	5
233	The <i>MAP3K7</i> gene: Further delineation of clinical characteristics and genotype/phenotype correlations. Human Mutation, 2022, 43, 1377-1395.	2 . 5	5
234	Diagnostik des Williams-Beuren-Syndroms. Monatsschrift Fur Kinderheilkunde, 1997, 145, 1066-1070.	0.1	3

#	Article	IF	Citations
235	Epithelial Cells from Buccal Smears and Urine. , 2002, , 97-108.		3
236	Severe, neonatal-onset OTC deficiency in twin sisters with a de novo balanced reciprocal translocation $t(X;5)(p21.1;q11)$. American Journal of Medical Genetics, Part A, 2005, 132A, 185-188.	1.2	3
237	Previously apparently undescribed autosomal recessive MCA/MR syndrome with light fixation, retinal cone dystrophy, and seizures: The M syndrome. , 1999, 82, 194-198.		2
238	Diagnosesicherung des Morbus Alexander in vivo durch Mutationsanalyse des GFAP -Gens. Monatsschrift Fur Kinderheilkunde, 2003, 151, 311-314.	0.1	2
239	Novel autosomal recessive progressive hyperpigmentation syndrome. American Journal of Medical Genetics, Part A, 2005, 135A, 195-199.	1.2	2
240	Microcephaly, lissencephaly, Hirschsprung disease and tetralogy of Fallot: a new syndrome?. Clinical Dysmorphology, 2006, 15, 107-110.	0.3	2
241	Fetal tuberous sclerosis and diagnosis of paternal gonadal mosaicism. Ultrasound in Obstetrics and Gynecology, 2020, 55, 691-692.	1.7	2
242	Pulmonary embolismâ€"a rare complication of Schimke immunoosseous dysplasia. European Journal of Pediatrics, 2007, 166, 1285-1288.	2.7	1
243	Exome sequencing in unspecific intellectual disability and rare disorders. Molecular Cytogenetics, 2014, 7, 126.	0.9	1
244	Generation and characterization of an endogenously tagged SPG11-human iPSC line by CRISPR/Cas9 mediated knock-in. Stem Cell Research, 2021, 56, 102520.	0.7	1
245	Monozygotic twins concordant for Cayler syndrome. American Journal of Medical Genetics Part A, 1998, 75, 113-117.	2.4	1
246	Prevalence of genetic susceptibility for breast and ovarian cancer in a non-cancer related study population: secondary germline findings from a Swiss single centre cohort. Swiss Medical Weekly, 2019, 149, w20092.	1.6	1
247	Syndromal foramina parietalia permagna: â€new―or FG syndrome? Comments on the paper by Chrzanowska et al. [1998]. American Journal of Medical Genetics Part A, 1998, 78, 406-407.	2.4	1
248	Monozygotic twins concordant for Cayler syndrome. American Journal of Medical Genetics Part A, 1998, 75, 113-7.	2.4	1
249	FISH studies on the telomeric regions of the T-cell acute lymphoblastic leukemia cell line CCRF-CEM. Cytogenetic and Genome Research, 2005, 111, 34-40.	1.1	0
250	Chromosomale Ursachen der geistigen Behinderung. Medizinische Genetik, 2009, 21, 237-245.	0.2	0
251	Wachstumsstörungen als Leitsymptom. Medizinische Genetik, 2012, 24, 123-137.	0.2	0
252	MCAD-Deficiency with Severe Neonatal Onset, Fatal Outcome and Normal Acylcarnitine Profile. International Journal of Neonatal Screening, 2017, 3, 21.	3.2	0

#	Article	IF	CITATIONS
253	Rare copy number variants in individuals at clinical high risk for psychosis: Enrichment of synaptic/brainâ€related functional pathways. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 140-151.	1.7	0
254	Herzfehlbildungen., 2005,, 141-182.		0
255	Novel Biallelic Variants in KIF21A Cause a Novel Phenotype of Fetal Akinesia with Neurodevelopmental Defects., 2021, 52,.		O
256	Response to Cueto-González etÂal. Genetics in Medicine, 2022, 24, 757.	2.4	0