Naoki Sugimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8583426/publications.pdf

Version: 2024-02-01

148 papers 8,262 citations

50276 46 h-index 51608 86 g-index

161 all docs

161 docs citations

times ranked

161

5715 citing authors

#	Article	IF	CITATIONS
1	Dielectricity of a molecularly crowded solution accelerates NTP misincorporation during RNA-dependent RNA polymerization by T7 RNA polymerase. Scientific Reports, 2022, 12, 1149.	3.3	4
2	Ruthenium Polypyridyl Complex Bound to a Unimolecular Chair-Form G-Quadruplex. Journal of the American Chemical Society, 2022, 144, 5956-5964.	13.7	28
3	Replication Control of Human Telomere G-Quadruplex DNA by G-Quadruplex Ligands Dependent on Solution Environment. Life, 2022, 12, 553.	2.4	1
4	Applicability of the nearest-neighbour model for pseudoknot RNAs. Chemical Communications, 2022, 58, 5952-5955.	4.1	1
5	Volumetric Strategy for Quantitatively Elucidating a Local Hydration Network around a G-Quadruplex. Analytical Chemistry, 2022, 94, 7400-7407.	6.5	4
6	Combined Effects of Methylated Cytosine and Molecular Crowding on the Thermodynamic Stability of DNA Duplexes. International Journal of Molecular Sciences, 2021, 22, 947.	4.1	7
7	Watson–Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life. Accounts of Chemical Research, 2021, 54, 2110-2120.	15.6	30
8	New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments. Topics in Current Chemistry, 2021, 379, 17.	5.8	15
9	Transcriptome screening followed by integrated physicochemical and structural analyses for investigating RNA-mediated berberine activity. Nucleic Acids Research, 2021, 49, 8449-8461.	14.5	11
10	Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Research, 2021, 49, 7839-7855.	14.5	47
11	Enhancement of the Catalytic Activity of Hammerhead Ribozymes by Organic Cations. ChemBioChem, 2021, 22, 2721-2728.	2.6	O
12	Chemical Biology of Double Helical and Non-Double Helical Nucleic Acids: "To <i>B</i> or Not To <i>B</i> , That Is the Questionâ€. Bulletin of the Chemical Society of Japan, 2021, 94, 1970-1998.	3.2	19
13	Chemical Modulation of DNA Replication along G-Quadruplex Based on Topology-Dependent Ligand Binding. Journal of the American Chemical Society, 2021, 143, 16458-16469.	13.7	31
14	Engineering exosome polymer hybrids by atom transfer radical polymerization. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	63
15	Effect of DNA modifications on the transition between canonical and non-canonical DNA structures in CpG islands during senescence. RSC Advances, 2021, 11, 37205-37217.	3.6	7
16	Intramolecular G-quadruplex-hairpin loop structure competition of a GC-rich exon region in the <i>TMPRSS2</i> gene. Chemical Communications, 2021, 58, 48-51.	4.1	4
17	Stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells. Chemical Society Reviews, 2020, 49, 8439-8468.	38.1	44
18	Improved nearest-neighbor parameters for the stability of RNA/DNA hybrids under a physiological condition. Nucleic Acids Research, 2020, 48, 12042-12054.	14.5	30

#	Article	IF	CITATIONS
19	Molecular crowding induces primer extension by RNA polymerase through base stacking beyond Watson–Crick rules. RSC Advances, 2020, 10, 33052-33058.	3.6	12
20	Effect of Molecular Crowding on DNA Polymerase Reactions along Unnatural DNA Templates. Molecules, 2020, 25, 4120.	3.8	5
21	Effects of Modifying Thioflavin T at the N3-Position on Its G4 Binding and Fluorescence Emission. Molecules, 2020, 25, 4936.	3.8	4
22	Signaling Aptamer Optimization through Selection Using RNA-Capturing Microsphere Particles. Analytical Chemistry, 2020, 92, 7955-7963.	6.5	6
23	Effect of Molecular Crowding on the Stability of RNA G-Quadruplexes with Various Numbers of Quartets and Lengths of Loops. Biochemistry, 2020, 59, 2640-2649.	2.5	30
24	Nearest-neighbor parameters for predicting DNA duplex stability in diverse molecular crowding conditions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14194-14201.	7.1	37
25	Thrombin binding aptamer G-quadruplex stabilized by pyrene-modified nucleotides. Nucleic Acids Research, 2020, 48, 3975-3986.	14.5	32
26	Hydroxyl groups in cosolutes regulate the G-quadruplex topology of telomeric DNA. Biochemical and Biophysical Research Communications, 2020, 525, 177-183.	2.1	4
27	Preferential targeting cancer-related i-motif DNAs by the plant flavonol fisetin for theranostics applications. Scientific Reports, 2020, 10, 2504.	3.3	25
28	New Modified Deoxythymine with Dibranched Tetraethylene Glycol Stabilizes G-Quadruplex Structures. Molecules, 2020, 25, 705.	3.8	5
29	Chemical biology of non-canonical structures of nucleic acids for therapeutic applications. Chemical Communications, 2020, 56, 2379-2390.	4.1	59
30	Effect of Potassium Concentration on Triplex Stability under Molecular Crowding Conditions. Molecules, 2020, 25, 387.	3.8	8
31	RNA G-Quadruplexes Facilitate RNA Accumulation in G-Rich Repeat Expansions. Biochemistry, 2020, 59, 1972-1980.	2.5	16
32	é«~圧力ãŒDNAã«åŠã¾4ã™å½±éŸį. Kagaku To Seibutsu, 2020, 58, 477-485.	0.0	0
33	Stabilization of DNA Loop Structures by Large Cations. Journal of Physical Chemistry B, 2019, 123, 7687-7694.	2.6	9
34	Quantitative Analysis of Stall of Replicating DNA Polymerase by G-Quadruplex Formation. Methods in Molecular Biology, 2019, 2035, 257-274.	0.9	4
35	$\langle i \rangle$ In situ $\langle i \rangle$ condensation of an anti-cancer drug into fibrin gel enabling effective inhibition of tumor cell growth. Chemical Communications, 2019, 55, 11679-11682.	4.1	7
36	Bisubstrate Function of RNA Polymerases Triggered by Molecular Crowding Conditions. Biochemistry, 2019, 58, 1081-1093.	2.5	11

#	Article	IF	CITATIONS
37	Conformational Dynamics of the RNA G-Quadruplex and its Effect on Translation Efficiency. Molecules, 2019, 24, 1613.	3.8	29
38	Lighting Up of Thiazole Orange on G-Quadruplex DNA by High Pressure. ACS Omega, 2019, 4, 4325-4329.	3.5	5
39	RNAâ€Capturing Microsphere Particles (Râ€CAMPs) for Optimization of Functional Aptamers. Small, 2019, 15, e1805062.	10.0	9
40	Validation of the nearest-neighbor model for Watson–Crick self-complementary DNA duplexes in molecular crowding condition. Nucleic Acids Research, 2019, 47, 3284-3294.	14.5	30
41	Bulky cations greatly increase the turnover of a native hammerhead ribozyme. RSC Advances, 2019, 9, 35820-35824.	3.6	2
42	C-Rich Sequence in a Non-Template DNA Strand Regulates Structure Change of G-Quadruplex in a Template Strand during Transcription. Bulletin of the Chemical Society of Japan, 2019, 92, 572-577.	3.2	7
43	Characterization of Intracellular Crowding Environments with Topology-Based DNA Quadruplex Sensors. Analytical Chemistry, 2019, 91, 2586-2590.	6.5	30
44	Pursuing origins of (poly)ethylene glycol-induced G-quadruplex structural modulations. Nucleic Acids Research, 2018, 46, 4301-4315.	14.5	44
45	Crowding Shifts the FMN Recognition Mechanism of Riboswitch Aptamer from Conformational Selection to Induced Fit. Angewandte Chemie - International Edition, 2018, 57, 6868-6872.	13.8	22
46	Crowding Shifts the FMN Recognition Mechanism of Riboswitch Aptamer from Conformational Selection to Induced Fit. Angewandte Chemie, 2018, 130, 6984-6988.	2.0	1
47	Alkylating probes for the G-quadruplex structure and evaluation of the properties of the alkylated G-quadruplex DNA. Organic and Biomolecular Chemistry, 2018, 16, 1436-1441.	2.8	12
48	Destabilization of DNA G-Quadruplexes by Chemical Environment Changes during Tumor Progression Facilitates Transcription. Journal of the American Chemical Society, 2018, 140, 642-651.	13.7	79
49	Drastic stability change of X-X mismatch in d(CXG) trinucleotide repeat disorders under molecular crowding condition. Biochemical and Biophysical Research Communications, 2018, 496, 601-607.	2.1	8
50	Recovery of the Formation and Function of Oxidized G-Quadruplexes by a Pyrene-Modified Guanine Tract. Journal of the American Chemical Society, 2018, 140, 5774-5783.	13.7	49
51	Design and Properties of Ligand-Conjugated Guanine Oligonucleotides for Recovery of Mutated G-Quadruplexes. Molecules, 2018, 23, 3228.	3.8	2
52	Co-Transcriptional Molecular Assembly Results in a Kinetically Controlled Irreversible RNA Conformational Switch. Analytical Chemistry, 2018, 90, 11193-11197.	6.5	7
53	An anionic phthalocyanine decreases NRAS expression by breaking down its RNA G-quadruplex. Nature Communications, 2018, 9, 2271.	12.8	55
54	Volumetric contributions of loop regions of G-quadruplex DNA to the formation of the tertiary structure. Biophysical Chemistry, 2017, 231, 146-154.	2.8	19

#	Article	IF	CITATIONS
55	Conformational Dynamics of mRNA in Gene Expression as New Pharmaceutical Target. Chemical Record, 2017, 17, 817-832.	5.8	13
56	Unexpected Position-Dependent Effects of Ribose G-Quartets in G-Quadruplexes. Journal of the American Chemical Society, 2017, 139, 7768-7779.	13.7	30
57	Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9605-9610.	7.1	104
58	Quantitative Analysis of Nucleic Acid Stability with Ligands Under High Pressure to Design Novel Drugs Targeting Gâ€Quadruplexes. Current Protocols in Nucleic Acid Chemistry, 2017, 70, 17.9.1-17.9.17.	0.5	3
59	Modulation of Ribozyme and Deoxyribozyme Activities Using Tetraalkylammonium Ions. ChemPhysChem, 2017, 18, 3614-3619.	2.1	6
60	Model studies of the effects of intracellular crowding on nucleic acid interactions. Molecular BioSystems, 2017, 13, 32-41.	2.9	43
61	Volumetric analysis of formation of the complex of G-quadruplex DNA with hemin using high pressure. Journal of Inorganic Biochemistry, 2017, 166, 199-207.	3.5	18
62	Effects of metal ions and cosolutes on G-quadruplex topology. Journal of Inorganic Biochemistry, 2017, 166, 190-198.	3.5	57
63	Specific Light-Up System for Protein and Metabolite Targets Triggered by Initiation Complex Formation. Scientific Reports, 2017, 7, 15191.	3.3	11
64	Newly characterized interaction stabilizes DNA structure: oligoethylene glycols stabilize G-quadruplexes CH–π interactions. Nucleic Acids Research, 2017, 45, 7021-7030.	14.5	23
65	Gâ€Quadruplexes with Tetra(ethylene glycol)â€Modified Deoxythymidines are Resistant to Nucleases and Inhibit HIVâ€1 Reverse Transcriptase. ChemBioChem, 2016, 17, 1399-1402.	2.6	10
66	Mechanical insights into ribosomal progression overcoming RNA G-quadruplex from periodical translation suppression in cells. Scientific Reports, 2016, 6, 22719.	3.3	39
67	Effects of trimethylamine $\langle i \rangle N \langle i \rangle$ -oxide and urea on DNA duplex and G-quadruplex. Science and Technology of Advanced Materials, 2016, 17, 753-759.	6.1	24
68	Thermal Stability of RNA Structures with Bulky Cations in Mixed Aqueous Solutions. Biophysical Journal, 2016, 111, 1350-1360.	0.5	13
69	tRNA Shifts the Gâ€quadruplex–Hairpin Conformational Equilibrium in RNA towards the Hairpin Conformer. Angewandte Chemie, 2016, 128, 14527-14531.	2.0	4
70	tRNA Shifts the Gâ€quadruplex–Hairpin Conformational Equilibrium in RNA towards the Hairpin Conformer. Angewandte Chemie - International Edition, 2016, 55, 14315-14319.	13.8	31
71	Novel One-Tube-One-Step Real-Time Methodology for Rapid Transcriptomic Biomarker Detection: Signal Amplification by Ternary Initiation Complexes. Analytical Chemistry, 2016, 88, 7137-7144.	6.5	36
72	Real-Time Monitoring of G-Quadruplex Formation during Transcription. Analytical Chemistry, 2016, 88, 1984-1989.	6.5	34

#	Article	IF	Citations
73	The structural stability and catalytic activity of DNA and RNA oligonucleotides in the presence of organic solvents. Biophysical Reviews, 2016, 8, 11-23.	3.2	66
74	Key Tertiary Interactions in FMN Riboswitch Aptamers Required for Ligand Binding. Bulletin of the Chemical Society of Japan, 2015, 88, 946-948.	3.2	10
75	Rational Design and Tuning of Functional RNA Switch to Control an Allosteric Intermolecular Interaction. Analytical Chemistry, 2015, 87, 7628-7635.	6.5	14
76	i-Motifs are more stable than G-quadruplexes in a hydrated ionic liquid. Chemical Communications, 2015, 51, 6909-6912.	4.1	35
77	Loop nucleotides impact the stability of intrastrand i-motif structures at neutral pH. Physical Chemistry Chemical Physics, 2015, 17, 16719-16722.	2.8	44
78	Control of guanine-rich DNA secondary structures depending on the protease activity using a designed PNA peptide. Organic and Biomolecular Chemistry, 2015, 13, 2022-2025.	2.8	12
79	Tuning Riboswitchâ€Mediated Gene Regulation by Rational Control of Aptamer Ligand Binding Properties. Angewandte Chemie - International Edition, 2015, 54, 905-909.	13.8	33
80	New Insights into Transcription Fidelity: Thermal Stability of Non-Canonical Structures in Template DNA Regulates Transcriptional Arrest, Pause, and Slippage. PLoS ONE, 2014, 9, e90580.	2.5	51
81	Organelle-mimicking liposome dissociates G-quadruplexes and facilitates transcription. Nucleic Acids Research, 2014, 42, 12949-12959.	14.5	6
82	Aptamerâ€Based Universal Fluorometric Sensors Based on Allosteric Modulation of RNA–Peptide Interactions. ChemMedChem, 2014, 9, 2045-2048.	3.2	3
83	Dangling Ends Perturb the Stability of RNA Duplexes Responsive to Surrounding Conditions. ChemMedChem, 2014, 9, 2150-2155.	3.2	4
84	Control of stability and structure of nucleic acids using cosolutes. Methods, 2014, 67, 151-158.	3.8	15
85	Noncanonical Structures and Their Thermodynamics of DNA and RNA Under Molecular Crowding. International Review of Cell and Molecular Biology, 2014, 307, 205-273.	3.2	30
86	Choline Ion Interactions with DNA Atoms Explain Unique Stabilization of A–T Base Pairs in DNA Duplexes: A Microscopic View. Journal of Physical Chemistry B, 2014, 118, 379-389.	2.6	63
87	Drastic Stabilization of Parallel DNA Hybridizations by a Polylysine Combâ€Type Copolymer with Hydrophilic Graft Chain. ChemMedChem, 2014, 9, 2156-2163.	3.2	13
88	Structure, stability and behaviour of nucleic acids in ionic liquids. Nucleic Acids Research, 2014, 42, 8831-8844.	14.5	104
89	Effects of Molecular Crowding on the Structures, Interactions, and Functions of Nucleic Acids. Chemical Reviews, 2014, 114, 2733-2758.	47.7	430
90	Comparable Stability of Hoogsteen and Watson–Crick Base Pairs in Ionic Liquid Choline Dihydrogen Phosphate. Scientific Reports, 2014, 4, 3593.	3.3	42

#	Article	IF	CITATIONS
91	Multiple and Cooperative Binding of Fluorescence Light-up Probe Thioflavin T with Human Telomere DNA G-Quadruplex. Biochemistry, 2013, 52, 5620-5628.	2.5	96
92	Translational halt during elongation caused by G-quadruplex formed by mRNA. Methods, 2013, 64, 73-78.	3.8	25
93	Quantitative Analyses of Nucleic Acid Stability Under the Molecular Crowding Condition Induced by Cosolutes. Current Protocols in Nucleic Acid Chemistry, 2013, 53, Unit7.19.	0.5	20
94	Study on effects of molecular crowding on G-quadruplex-ligand binding and ligand-mediated telomerase inhibition. Methods, 2013, 64, 19-27.	3.8	33
95	Efficacy of Base-Modification on Target Binding of Small Molecule DNA Aptamers. Journal of the American Chemical Society, 2013, 135, 9412-9419.	13.7	92
96	Unusual \hat{a}^3 1 Ribosomal Frameshift Caused by Stable RNA G-Quadruplex in Open Reading Frame. Analytical Chemistry, 2013, 85, 11435-11439.	6.5	41
97	Stability of RNA quadruplex in open reading frame determines proteolysis of human estrogen receptor α. Nucleic Acids Research, 2013, 41, 6222-6231.	14.5	63
98	Suppression of Gene Expression by Gâ€Quadruplexes in Open Reading Frames Depends on Gâ€Quadruplex Stability. Angewandte Chemie - International Edition, 2013, 52, 5522-5526.	13.8	125
99	Selection of RNAs for Constructing "Lighting-UP―Biomolecular Switches in Response to Specific Small Molecules. PLoS ONE, 2013, 8, e60222.	2.5	7
100	Effect of Pressure on Thermal Stability of G-Quadruplex DNA and Double-Stranded DNA Structures. Molecules, 2013, 18, 13297-13319.	3.8	46
101	Hydration Changes upon DNA Folding Studied by Osmotic Stress Experiments. Biophysical Journal, 2012, 102, 2808-2817.	0.5	47
102	DNA tetraplex structure formation from human telomeric repeat motif (TTAGGG):(CCCTAA) in nanocavity water pools of reverse micelles. Chemical Communications, 2012, 48, 4815.	4.1	43
103	Synchronized Translation for Detection of Temporal Stalling of Ribosome during Single-Turnover Translation. Analytical Chemistry, 2012, 84, 857-861.	6.5	13
104	Beads-on-a-String Structure of Long Telomeric DNAs under Molecular Crowding Conditions. Journal of the American Chemical Society, 2012, 134, 20060-20069.	13.7	96
105	Molecular Crowding and Hydration Regulating of G-Quadruplex Formation. Topics in Current Chemistry, 2012, 330, 87-110.	4.0	34
106	Dehydration from conserved stem regions is fundamental for ligand-dependent conformational transition of the adenine-specific riboswitch. Chemical Communications, 2012, 48, 9693.	4.1	15
107	Dimerization of Nucleic Acid Hairpins in the Conditions Caused by Neutral Cosolutes. Journal of Physical Chemistry B, 2012, 116, 7406-7415.	2.6	26
108	Phthalocyanines: a new class of G-quadruplex-ligands with many potential applications. Chemical Communications, 2012, 48, 6203.	4.1	106

#	Article	IF	CITATIONS
109	A–T Base Pairs are More Stable Than G–C Base Pairs in a Hydrated Ionic Liquid. Angewandte Chemie - International Edition, 2012, 51, 1416-1419.	13.8	94
110	Thermodynamic stability of Hoogsteen and Watson–Crick base pairs in the presence of histone H3-mimicking peptide. Chemical Communications, 2011, 47, 2790.	4.1	18
111	Conformational Flexibility Influences Degree of Hydration of Nucleic Acid Hybrids. Journal of Physical Chemistry B, 2011, 115, 13862-13872.	2.6	29
112	Loop residues of thrombin-binding DNA aptamer impact G-quadruplex stability and thrombin binding. Biochimie, 2011, 93, 1231-1238.	2.6	81
113	The Effects of Molecular Crowding on the Structure and Stability of G-Quadruplexes with an Abasic Site. Journal of Nucleic Acids, 2011, 2011, 1-9.	1.2	17
114	Gene Regulation System with an Artificial RNA Switch Operating in Human Cells. ChemBioChem, 2011, 12, 1174-1178.	2.6	10
115	Monomorphic RNA G-Quadruplex and Polymorphic DNA G-Quadruplex Structures Responding to Cellular Environmental Factors. Biochemistry, 2010, 49, 4554-4563.	2.5	130
116	Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. Chemical Communications, 2010, 46, 1299.	4.1	176
117	Anionic phthalocyanines targeting G-quadruplexes and inhibiting telomerase activity in the presence of excessive DNA duplexes. Chemical Communications, 2010, 46, 5740.	4.1	56
118	Sole and Stable RNA Duplexes of G-Rich Sequences Located in the 5′-Untranslated Region of Protooncogenes. Biochemistry, 2010, 49, 7190-7201.	2.5	11
119	Stabilization of Three-Way Junctions of DNA under Molecular Crowding Conditions. Journal of the American Chemical Society, 2009, 131, 9268-9280.	13.7	61
120	Facilitation of RNA Enzyme Activity in the Molecular Crowding Media of Cosolutes. Journal of the American Chemical Society, 2009, 131, 16881-16888.	13.7	121
121	Hydration of Watsonâ^'Crick Base Pairs and Dehydration of Hoogsteen Base Pairs Inducing Structural Polymorphism under Molecular Crowding Conditions. Journal of the American Chemical Society, 2009, 131, 3522-3531.	13.7	127
122	Regulation of Telomerase Activity by the Thermodynamic Stability of a DNAâRNA Hybrid. Angewandte Chemie - International Edition, 2008, 47, 9034-9038.	13.8	30
123	Structural effect of synthetic zwitterionic cosolutes on the stability of DNA duplexes. Tetrahedron, 2008, 64, 168-174.	1.9	24
124	Molecular crowding effects on structure and stability of DNA. Biochimie, 2008, 90, 1040-1051.	2.6	234
125	Conformation and the sodium ion condensation on DNA and RNA structures in the presence of a neutral cosolute as a mimic of the intracellular media. Molecular BioSystems, 2008, 4, 579.	2.9	46
126	Effects of Polyethylene Glycol on DNA Duplex Stability at Different NaCl Concentrations. Bulletin of the Chemical Society of Japan, 2007, 80, 1987-1994.	3.2	28

#	Article	IF	Citations
127	Regulation of DNA nucleases by molecular crowding. Nucleic Acids Research, 2007, 35, 4086-4093.	14.5	75
128	Characterization of Structure and Stability of Long Telomeric DNA G-Quadruplexes. Journal of the American Chemical Society, 2006, 128, 15461-15468.	13.7	166
129	Hydration Regulates Thermodynamics of G-Quadruplex Formation under Molecular Crowding Conditions. Journal of the American Chemical Society, 2006, 128, 7957-7963.	13.7	301
130	Effect of molecular crowding on DNA polymerase activity. Biotechnology Journal, 2006, 1, 440-446.	3.5	70
131	DNA Logic Gates Based on Structural Polymorphism of Telomere DNA Molecules Responding to Chemical Input Signals. Angewandte Chemie - International Edition, 2006, 45, 7716-7719.	13.8	138
132	Drastic Effect of a Single Base Difference between Human and Tetrahymena Telomere Sequences on Their Structures under Molecular Crowding Conditions. Angewandte Chemie - International Edition, 2005, 44, 3740-3744.	13.8	78
133	Duplex Dissociation of Telomere DNAs Induced by Molecular Crowding. Journal of the American Chemical Society, 2004, 126, 165-169.	13.7	169
134	The Effect of Molecular Crowding with Nucleotide Length and Cosolute Structure on DNA Duplex Stability. Journal of the American Chemical Society, 2004, 126, 14330-14331.	13.7	209
135	Structural Polymorphism of Telomeric DNA Regulated by pH and Divalent Cation. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 203-221.	1.1	39
136	Structural Competition Involving G-Quadruplex DNA and Its Complementâ€. Biochemistry, 2003, 42, 11736-11744.	2.5	113
137	Long RNA Dangling End Has Large Energetic Contribution to Duplex Stability. Journal of the American Chemical Society, 2002, 124, 10367-10372.	13.7	79
138	Molecular Crowding Regulates the Structural Switch of the DNA G-Quadruplexâ€. Biochemistry, 2002, 41, 15017-15024.	2.5	175
139	Stabilization Factors Affecting Duplex Formation of Peptide Nucleic Acid with DNA. Biochemistry, 2001, 40, 8444-8451.	2.5	36
140	Thermodynamicsâ^'Structure Relationship of Single Mismatches in RNA/DNA Duplexes. Biochemistry, 2000, 39, 11270-11281.	2.5	137
141	Improved Thermodynamic Parameters and Helix Initiation Factor to Predict Stability of DNA Duplexes. Nucleic Acids Research, 1996, 24, 4501-4505.	14.5	453
142	Thermodynamic Parameters To Predict Stability of RNA/DNA Hybrid Duplexes. Biochemistry, 1995, 34, 11211-11216.	2.5	660
143	RNA/DNA hybrid duplexes with identical nearest-neighbor base-pairs have identical stability. FEBS Letters, 1994, 354, 74-78.	2.8	27
144	Free energy increments for hydrogen bonds in nucleic acid base pairs. Journal of the American Chemical Society, 1987, 109, 3783-3785.	13.7	158

#	ARTICLE	IF	CITATION
145	Sequence dependence for the energetics of terminal mismatches in ribooligonucleotides. Biochemistry, 1987, 26, 4559-4562.	2.5	46
146	Sequence dependence for the energetics of dangling ends and terminal base pairs in ribonucleic acid. Biochemistry, 1987, 26, 4554-4558.	2.5	124
147	Energetics of internal GU mismatches in ribooligonucleotide helixes. Biochemistry, 1986, 25, 5755-5759.	2.5	101
148	Stability of XGCGCp, GCGCYp, and XGCGCYp helixes: an empirical estimate of the energetics of hydrogen bonds in nucleic acids. Biochemistry, 1986, 25, 3214-3219.	2.5	134