Marcus Bleicher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8582456/publications.pdf

Version: 2024-02-01

404 papers 11,806 citations

51 h-index 97 g-index

407 all docs

407 docs citations

times ranked

407

4940 citing authors

#	Article	IF	CITATIONS
1	Microscopic models for ultrarelativistic heavy ion collisions. Progress in Particle and Nuclear Physics, 1998, 41, 255-369.	14.4	1,575
2	Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model. Journal of Physics G: Nuclear and Particle Physics, 1999, 25, 1859-1896.	3.6	1,287
3	Fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage. Physical Review C, 2008, 78, .	2.9	309
4	Signatures in the Planck regime. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 575, 85-99.	4.1	263
5	Heavy-ion collisions at the LHCâ€"Last call for predictions. Journal of Physics G: Nuclear and Particle Physics, 2008, 35, 054001.	3.6	255
6	Event-by-event simulation of the three-dimensional hydrodynamic evolution from flux tube initial conditions in ultrarelativistic heavy ion collisions. Physical Review C, 2010, 82, .	2.9	222
7	Strangeness dynamics and transverse pressure in relativistic nucleus-nucleus collisions. Physical Review C, 2004, 69, .	2.9	152
8	Hadron Formation in Relativistic Nuclear Collisions and the QCD Phase Diagram. Physical Review Letters, 2013, 111, 082302.	7.8	137
9	Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production vs. coalescence. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 714, 85-91.	4.1	132
	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>A</mml:mi><mml:mo>+<td>>><mml:m< td=""><td>ıi>A</td></mml:m<></td></mml:mo></mml:mrow>	>> <mml:m< td=""><td>ıi>A</td></mml:m<>	ıi>A
10	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msqrt><mml:msub><mml:mi>sNN</mml:mi></mml:msub></mml:msqrt><mml:mo>=</mml:mo><mml:mn>7.7</mml:mn></mml:mrow>	:mi> <mm nn><mm :< td=""><td>l:mtext mo>–</td></mm :<></mm 	l:mtext mo>–
11	Physical Review C, 2015, 91, . Numerical magneto-hydrodynamics for relativistic nuclear collisions. European Physical Journal C, 2016, 76, 1.	3.9	128
12	A <mml:math altimg="si27.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math> dimensional viscous hydrodynamic code for relativistic heavy ion collisions. Computer Physics Communications, 2014, 185, 3016-3027.	7.5	124
13	Strange resonance production: probing chemical and thermal freeze-out in relativistic heavy ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 530, 81-87 Evidence for Flow from Hydrodynamic Simulations of mml:math	4.1	119
14	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>p</mml:mi><mml:mtext>â^'</mml:mtext><mml:mi>Pb</mml:mi>at 5.02ÂTeV from<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>v</mml:mi>><mml:mn>2</mml:mn></mml:msub></mml:math>Mass</mml:mrow>	:mrow> <td>mmlimath>Co</td>	mmlimath>Co
15	Splitting. Physical Review Letters, 2014, 112, 232301. Jets, bulk matter, and their interaction in heavy ion collisions at several TeV. Physical Review C, 2012, 85, .	2.9	104
16	Anisotropic flow in ultra-relativistic heavy-ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 526, 309-314.	4.1	102
17	Nonequilibrium chiral fluid dynamics including dissipation and noise. Physical Review C, 2011, 84, .	2.9	97
18	Physics on the smallest scales: an introduction to minimal length phenomenology. European Journal of Physics, 2012, 33, 853-862.	0.6	96

#	Article	IF	CITATIONS
19	Equation of state, spectra, and composition of hot and dense infinite hadronic matter in a microscopic transport model. Physical Review C, 1998, 58, 1727-1733.	2.9	91
20	Last call for RHIC predictions. Nuclear Physics A, 1999, 661, 205-260.	1.5	91
21	Probing the equation of state with pions. Journal of Physics G: Nuclear and Particle Physics, 2006, 32, 151-164.	3.6	88
22	Nonthermal <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi><mml:mo>/</mml:mo><mml:mi>ï€</mml:mi></mml:math> Ratio at LHC as a Consequence of Hadronic Final State Interactions. Physical Review Letters, 2013, 110, 042501.	7.8	86
23	Local equilibrium in heavy ion collisions: Microscopic model versus statistical model analysis. Physical Review C, 1999, 60, .	2.9	85
24	Event-by-event fluctuations of the charged particle ratio from nonequilibrium transport theory. Physical Review C, 2000, 62, .	2.9	84
25	Black hole remnants at the LHC. Journal of High Energy Physics, 2005, 2005, 053-053.	4.7	82
26	Probing the density dependence of the symmetry potential at low and high densities. Physical Review C, 2005, 72, .	2.9	74
27	(3+1)-dimensional hydrodynamic expansion with a critical point from realistic initial conditions. Physical Review C, 2008, 77, .	2.9	74
28	Hadronic resonance production and interaction in partonic and hadronic matter in the EPOS3 model with and without the hadronic afterburner UrQMD. Physical Review C, 2016, 93, .	2.9	74
29	Hadronic freeze-out following a first order hadronization phase transition in ultrarelativistic heavy-ion collisions. Physical Review C, 1999, 60, .	2.9	72
30	Strangeness enhancement in heavy ion collisions – evidence for quark-gluon matter?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 471, 89-96.	4.1	69
31	The Casimir effect in the presence of compactified universal extra dimensions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 582, 1-5.	4.1	68
32	Directed and elliptic flow in heavy-ion collisions fromEbeam=90MeV/nucleon toEc.m.=200GeV/nucleon. Physical Review C, 2006, 74, .	2.9	68
33	Examination of directed flow as a signal for a phase transition in relativistic nuclear collisions. Physical Review C, 2014, 89, .	2.9	67
34	Quasistable black holes at the Large Hadron Collider. Physical Review D, 2002, 66, .	4.7	66
35	Deuteron production from phase-space coalescence in the UrQMD approach. Physical Review C, 2019, 99, .	2.9	66
	Centrality dependence of hadronization and chemical freeze-out conditions in heavy ion collisions		

at<mml:math
xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:msub><mml:mi>s</mml:mfow><mml
Physical Review C, 2014, 90, .

#	Article	IF	Citations
37	Magnetic fields in heavy ion collisions: flow and charge transport. European Physical Journal C, 2020, 80, 1.	3.9	63
38	Collisional processes of on-shell and off-shell heavy quarks in vacuum and in the quark-gluon plasma. Physical Review C, 2014, 89, .	2.9	62
39	Can momentum correlations prove kinetic equilibration in heavy ion collisions at 160 AGeV?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 435, 9-12.	4.1	61
40	Transport theories for heavy-ion collisions in the 1AGeV regime. Journal of Physics G: Nuclear and Particle Physics, 2005, 31, S741-S757.	3.6	61
41	Hydrodynamics with a chiral hadronic equation of state including quark degrees of freedom. Physical Review C, 2010, 81, .	2.9	61
42	Chiral fluid dynamics with explicit propagation of the Polyakov loop. Physical Review C, 2013, 87, .	2.9	61
43	ModelingJ Î^production and absorption in a microscopic nonequilibrium approach. Physical Review C, 1999, 60, .	2.9	59
44	Medium modifications of the nucleon–nucleon elastic cross section in neutron-rich intermediate energy HICs. Journal of Physics G: Nuclear and Particle Physics, 2006, 32, 407-415.	3.6	59
45	Local thermodynamical equilibrium and the equation of state of hot, dense matter created in Au+Au collisions at AGS. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 434, 379-387.	4.1	58
46	Formation of hypermatter and hypernuclei within transport models in relativistic ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 742, 7-14.	4.1	57
47	Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions. Journal of Physics G: Nuclear and Particle Physics, 2005, 31, 1359-1374.	3.6	56
48	Elliptic flow analysis in Au+Au collisions atsNN=200GeV: Fluctuations vs non-flow effects. Physical Review C, 2005, 72, .	2.9	55
49	Direct emission of multiple strange baryons in ultrarelativistic heavy-ion collisions from the phase boundary. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 460, 411-416.	4.1	54
50	Hadronization conditions in relativistic nuclear collisions and the QCD pseudo-critical line. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 764, 241-246.	4.1	54
51	Local thermal and chemical equilibration and the equation of state in relativistic heavy ion collisions. Journal of Physics G: Nuclear and Particle Physics, 1999, 25, 351-361.	3.6	52
52	Dynamics and freeze-out of hadron resonances at RHIC. Journal of Physics G: Nuclear and Particle Physics, 2004, 30, S111-S118.	3.6	50
53	Evidence for hydrodynamic evolution in proton-proton scattering at 900 GeV. Physical Review C, 2011 , 83 , .	2.9	50
54	Hadronization and hadronic freeze-out in relativistic nuclear collisions. Physical Review C, 2012, 85, .	2.9	50

#	Article	IF	CITATIONS
55	Dilepton production and reaction dynamics in heavy-ion collisions at SIS energies from coarse-grained transport simulations. Physical Review C, 2015, 92, .	2.9	50
56	Sub-threshold $i = \frac{1}{e}$ is and ${\{m\{Xi\}}}^{-}$ production by high mass resonances with UrQMD. Journal of Physics G: Nuclear and Particle Physics, 2016, 43, 015104.	3.6	50
57	Probing the minimal length scale by precision tests of the muon gâ^2. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 584, 109-113.	4.1	48
58	Formation of droplets with high baryon density at the QCD phase transition in expanding matter. Nuclear Physics A, 2014, 925, 14-24.	1.5	47
59	The effect of "pre-formed―hadron potentials on the dynamics of heavy ion collisions and the HBT puzzle. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 659, 525-530.	4.1	46
60	Neutrino oscillations as a novel probe for a minimal length. Classical and Quantum Gravity, 2011, 28, 235019.	4.0	46
61	Equilibration and relaxation times at the chiral phase transition including reheating. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 711, 109-116.	4.1	46
62	Black hole production in large extra dimensions at the Tevatron: aÂchance to observe a first glimpse of TeV scale gravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 548, 73-76.	4.1	45
63	Effects of a phase transition on HBT correlations in an integrated Boltzmann+hydrodynamics approach. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 674, 111-116.	4.1	45
64	$\hat{\mathfrak{b}}$ polarization in peripheral collisions at moderately relativistic energies. Physical Review C, 2016, 94, .	2.9	45
65	Anomalous hydrodynamics kicks neutron stars. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 760, 170-174.	4.1	44
66	Statistical mechanics of colored objects. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 478, 161-171.	4.1	42
67	Particle number fluctuations in high-energy nucleus-nucleus collisions from microscopic transport approaches. Physical Review C, 2006, 73, .	2.9	42
68	Microscopic models and effective equation of state in nuclear collisions in the vicinity of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>E</mml:mi><mml:mrow><mml:mi mathvariant="normal"> lab</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>30</mml:mn></mml:mrow>====<td>2.9 1> <mml:m< td=""><td>42 i>A</td></mml:m<></td></mml:math>	2.9 1> <mml:m< td=""><td>42 i>A</td></mml:m<>	42 i>A
69	at the GSI Facility for Antiproton and Ion Research (FAIR) and beyond. Physical Review C, 2008, 78, . Eccentricity fluctuations in an integrated hybrid approach: Influence on elliptic flow. Physical Review C, 2010, 81, .	2.9	42
70	The impact of dissipation and noise on fluctuations in chiral fluid dynamics. Journal of Physics G: Nuclear and Particle Physics, 2013, 40, 055108.	3.6	42
71	Deep sub-threshold <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ξ</mml:mi></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Î></mml:mi></mml:math> production in nuclear collisions with the UrOMD transport model. Physical Review C. 2014. 90.	2.9	42
72	Production of spectator hypermatter in relativistic heavy-ion collisions. Physical Review C, 2011, 84, .	2.9	41

#	Article	IF	CITATIONS
73	Hydrodynamics at large baryon densities: Understanding proton versus anti-proton <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub>v<mml:mn>2</mml:mn></mml:msub></mml:math> and other puzzles. Physical Review C. 2012. 86	2.9	41
74	Event simulation based on three-fluid hydrodynamics for collisions at energies available at the Dubna Nuclotron-based Ion Collider Facility and at the Facility for Antiproton and Ion Research in Darmstadt. Physical Review C, 2016, 94, .	2.9	40
75	Ideal hydrodynamics and elliptic flow at CERN Super Proton Synchrotron (SPS) energies: Importance of the initial conditions. Physical Review C, 2009, 79, .	2.9	39
76	System size and energy dependence of dilepton production in heavy-ion collisions at 1-2 \hat{A} GeV/nucleon energies. Physical Review C, 2013, 87, .	2.9	39
77	In Silico Analysis of Cell Cycle Synchronisation Effects in Radiotherapy of Tumour Spheroids. PLoS Computational Biology, 2013, 9, e1003295.	3.2	39
78	Model dependence of lateral distribution functions of high energy cosmic ray air showers. Astroparticle Physics, 2004, 21, 87-94.	4.3	38
79	Net-baryon-, net-proton-, and net-charge kurtosis in heavy-ion collisions within a relativistic transport approach. European Physical Journal C, 2012, 72, 1.	3.9	38
80	Vorticity in peripheral collisions at the Facility for Antiproton and Ion Research and at the JINR Nuclotron-based Ion Collider fAcility. Physical Review C, 2014, 90, .	2.9	38
81	Heavy quark transport in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider within the UrQMD hybrid model. Physical Review C, 2016, 93, .	2.9	37
82	Fluctuations and inhomogenities of energy density and isospin in Pb+Pb at the SPS. Nuclear Physics A, 1998, 638, 391c-394c.	1.5	36
83	Production and evolution path of dileptons at energies accessible to the HADES detector. Physical Review C, 2009, 79, .	2.9	36
84	Microscopic calculations of stopping, flow and electromagnetic radiation from 160AMeV to 160AGeV. Nuclear Physics A, 1996, 610, 116-123.	1.5	34
85	Examination of scaling of Hanbury-Brown–Twiss radii with charged particle multiplicity. Physical Review C, 2012, 85, .	2.9	34
86	Are We Close to an Equilibrated Quark-Gluon Plasma? Nonequilibrium Analysis of Particle Production in Ultrarelativistic Heavy Ion Collisions. Physical Review Letters, 1998, 81, 4092-4095.	7.8	33
87	Event-by-event fluctuations and the QGP. Nuclear Physics A, 2002, 698, 261-268.	1.5	33
88	Charged-particle (pseudo-)rapidity distributions inp+p \hat{A}^- /p+pandPb+Pb/Au+Aucollisions from UrQMD calculations at energies available at the CERN Super Proton Synchrotron to the Large Hadron Collider. Physical Review C, 2009, 79, .	2.9	33
89	Directed, elliptic and triangular flow of protons in Au+Au reactions at 1.23 A GeV: a theoretical analysis of the recent HADES data. Journal of Physics G: Nuclear and Particle Physics, 2018, 45, 085101.	3.6	33
90	Strangeness fluctuations and MEMO production at FAIR. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 676, 126-131.	4.1	32

#	Article	IF	Citations
91	Formation of hypernuclei in heavy-ion collisions around the threshold energies. Physical Review C, 2017, 95, .	2.9	32
92	Probing hadronization and freeze-out with multiple strange hadrons and strange resonances. Nuclear Physics A, 2003, 715, 85c-94c.	1.5	31
93	The âŸ' <i>m_T</i> ⟩ excitation function: freeze-out and equation of state dependence. Journal of Physics G: Nuclear and Particle Physics, 2009, 36, 055104.	3.6	31
94	Microdosimetry spectra and RBE of 1H, 4He, 7Li and 12C nuclei in water studied with Geant4. Nuclear Instruments & Methods in Physics Research B, 2014, 320, 89-99.	1.4	31
95	Mechanisms for the production of hypernuclei beyond the neutron and proton drip lines. Physical Review C, 2013, 88, .	2.9	30
96	Critical review of quark gluon plasma signatures. Progress in Particle and Nuclear Physics, 1999, 42, 279-293.	14.4	29
97	Overpopulation of $\hat{\mathbb{Q}}^{-1}$ in the proposition of $\hat{\mathbb{Q}^{-1}$ in the proposition of $\hat{\mathbb{Q}^{-1}$ in the propositi	7.8	29
98	Constraints on models for proton-proton scattering from multistrange baryon data. Physical Review D, 2003, 67, .	4.7	29
99	Black holes at LHC?. Journal of Physics G: Nuclear and Particle Physics, 2007, 34, S535-S542.	3.6	29
100	Coarse-graining approach for dilepton production at energies available at the CERN Super Proton Synchrotron. Physical Review C, 2015 , 91 , .	2.9	29
101	First, second, third and fourth flow harmonics of deuterons and protons in Au+Au reactions at 1.23 AGeV. Journal of Physics G: Nuclear and Particle Physics, 2020, 47, 055101.	3.6	29
102	Suppression of high <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>p</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:math> hadrons in Pb + Pb collisions at LHC. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 709, 82-86.	4.1	28
103	Modelling relativistic heavy-ion collisions with dynamical transport approaches. Progress in Particle and Nuclear Physics, 2022, 122, 103920.	14.4	27
104	Large extra dimensions and small black holes at the LHC. Journal of Physics: Conference Series, 2010, 237, 012008.	0.4	26
105	Influence of the hadronic phase on observables in ultrarelativistic heavy ion collisions. Physical Review C, 2017, 95, .	2.9	26
106	Equation of state of resonance-rich matter in the central cell in heavy-ion collisions ats=200AGeV. Physical Review C, 2001, 63, .	2.9	25
107	Anisotropic flow at RHIC: how unique is the number-of-constituent-quark scaling?. Journal of Physics G: Nuclear and Particle Physics, 2006, 32, 1121-1129.	3.6	25
108	Local equilibrium in heavy-ion collisions: Microscopic analysis of a central cell versus infinite matter. Physical Review C, 2000, 62, .	2.9	23

#	Article	IF	CITATIONS
109	A micro-canonical description of hadron production in proton–proton collisions. Journal of Physics G: Nuclear and Particle Physics, 2004, 30, S589-S594.	3.6	23
110	Dimuon radiation at relativistic energies available at the CERN Super Proton Synchrotron within a $(3\hat{A}+\hat{A}1)D$ hydrodynamic + cascade model. Physical Review C, 2011, 84, .	2.9	23
111	A microscopic calculation of secondary Drell-Yan production in heavy ion collisions. European Physical Journal C, 1998, 5, 349-355.	3.9	22
112	Reaction dynamics in Pb + Pb at the CERN/SPS: From partonic degrees of freedom to freeze-out. Progress in Particle and Nuclear Physics, 1999, 42, 313-322.	14.4	22
113	Shape analysis of strongly interacting systems: the heavy ion case. New Journal of Physics, 2011, 13, 065006.	2.9	22
114	Core-corona separation in the UrQMD hybrid model. Physical Review C, 2011, 84, .	2.9	22
115	Enhanced strange particle yields - signal of a phase of massless particles?. Journal of Physics G: Nuclear and Particle Physics, 2001, 27, 449-457.	3.6	21
116	Black hole relics in large extra dimensions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 566, 233-239.	4.1	21
117	A model comparison of resonance lifetime modifications, a soft equation of state and non-Gaussian effects on π–π correlations at FAIR/AGS energies. Journal of Physics G: Nuclear and Particle Physics, 2009, 36, 015111.	3.6	21
118	Ultrarelativistic quantum molecular dynamics calculations of two-pion Hanbury-Brownâ€"Twiss correlations in central Pb-Pb collisions at <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:msub><mml:mi>s</mml:mi><mml:mrow><mml:mi>N</mml:mi>Physical Review C, 2012, 85, .</mml:mrow></mml:msub></mml:msqrt></mml:mrow></mml:math>	2.9 · <mml:mi></mml:mi>	21 ·N
119	Spatio-Temporal Dynamics of Hypoxia during Radiotherapy. PLoS ONE, 2015, 10, e0133357.	2.5	21
120	Photon and dilepton production at the Facility for Proton and Anti-Proton Research and beam-energy scan at the Relativistic Heavy-Ion Collider using coarse-grained microscopic transport simulations. Physical Review C, 2016, 93, .	2.9	21
121	Antibaryons in massive heavy ion reactions: Importance of potentials. Physical Review C, 1996, 53, 2011-2013.	2.9	20
122	Microdosimetry of radiation field from a therapeutic 12C beam in water: A study with Geant4 toolkit. Nuclear Instruments & Methods in Physics Research B, 2013, 310, 37-53.	1.4	20
123	Net-proton-number kurtosis and skewness in nuclear collisions: Influence of deuteron formation. Physical Review C, 2015, 92, .	2.9	20
124	Sub-threshold charm production in nuclear collisions. Physical Review C, 2017, 95, .	2.9	20
125	Sumanene as a delivery system for 5-fluorouracil drug – DFT, SAPT and MD study. Journal of Molecular Liquids, 2021, 342, 117526.	4.9	20
126	Microscopic coloured quark dynamics in the soft non-perturbative regime - description of hadron formation in relativistic S + Au collisions at CERN. New Journal of Physics, 2001, 3, 8-8.	2.9	19

#	Article	IF	Citations
127	On the role of initial conditions and final state interactions in ultrarelativistic heavy ion collisions. Journal of Physics G: Nuclear and Particle Physics, 2009, 36, 064030.	3.6	19
128	Comparative study of dose distributions and cell survival fractions for ¹ H, ⁴ He, ¹² C and ¹⁶ O beams using Geant4 and Microdosimetric Kinetic model. Physics in Medicine and Biology, 2015, 60, 3313-3331.	3.0	19
129	Enhanced antiproton production in Pb(160 A GeV)+Pb reactions: evidence for quark gluon matter?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 485, 133-138.	4.1	18
130	First order calculation of the inclusive cross sectionpp→ZZby graviton exchange in large extra dimensions. Physical Review D, 2007, 76, .	4.7	18
131	Forward-Backward Charge Fluctuations at RHIC Energies. Nuclear Physics A, 2007, 785, 253-256.	1.5	18
132	Centrality and system size dependence of (multi-strange) hyperons at40Aand158AÂGeV: A comparison between a binary collision model and a Boltzmann+hydrodynamic hybrid model. Physical Review C, 2009, 80, .	2.9	18
133	Hybrid model calculations of direct photons in high-energy nuclear collisions. Physical Review C, 2010, 81, .	2.9	18
134	Resonances as a possible observable of hot and dense nuclear matter. Journal of Physics G: Nuclear and Particle Physics, 2010, 37, 094046.	3.6	18
135	Excitation function of energy density and partonic degrees of freedom in relativistic heavy ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 442, 443-448.	4.1	17
136	Enhanced event-by-event fluctuations in pion multiplicity as a signal of disoriented chiral condensates in relativistic heavy-ion collisions. Physical Review C, 2000, 62, .	2.9	17
137	How sensitive are di-leptons from ϕmesons to the high baryon density region?. Physical Review C, 2008, 78, .	2.9	17
138	Extraction of the sound velocity from rapidity spectra: Evidence for QGP formation at FAIR/RHIC-BES energies. European Physical Journal A, 2012, 48, 1.	2.5	17
139	Constraining pion interactions at very high energies by cosmic ray data. Physical Review D, 2016, 93, .	4.7	17
140	Coalescence, the thermal model and multi-fragmentation: the energy and volume dependence of light nuclei production in heavy ion collisions. Journal of Physics G: Nuclear and Particle Physics, 2022, 49, 055107.	3.6	17
141	Phasespace structure of antideuteron production in heavy ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 361, 10-13.	4.1	16
142	Deuterons and space-momentum correlations in high energy nuclear collisions. Physical Review C, 1999, 60, .	2.9	16
143	Distinguishing hadronic cascades from hydrodynamic models inPb(160Aâ€,GeV)+Pbreactions by impact parameter variation. Physical Review C, 1999, 59, R1844-R1845.	2.9	16
144	The origin of transverse flow at the SPS. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 447, 227-232.	4.1	16

#	Article	IF	CITATIONS
145	Event-by-event fluctuations and the QGP. Nuclear Physics A, 2002, 702, 291-298.	1.5	16
146	Collective Flow Signals the Quark–Gluon Plasma. Acta Physica Hungarica A Heavy Ion Physics, 2005, 24, 189-201.	0.4	16
147	Event-by-event analysis of baryon-strangeness correlations: Pinning down the critical temperature and volume of quark-gluon-plasma formation. Physical Review C, 2006, 73, .	2.9	16
148	Reconstructing Oand is mesons from nonleptonic decays in C+C collisions at 2 GeV/nucleon in transport model calculations. Physical Review C, 2006, 74, .	2.9	16
149	Searching for the critical point of QCD: Theoretical benchmark calculations. Physical Review C, 2007, 76, .	2.9	16
150	Formation of hypernuclei in evaporation and fission processes. Physical Review C, 2016, 94, .	2.9	16
151	Towards solving the puzzle of high temperature light (anti)-nuclei production in ultra-relativistic heavy ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 827, 136891.	4.1	16
152	Analysis of reaction dynamics at ultrarelativistic energies in a combined parton-hadron transport approach. Physical Review C, 1999, 60, .	2.9	15
153	Microcanonical hadron production inppcollisions. Physical Review C, 2004, 69, .	2.9	15
154	Theoretical Analysis of Dilepton Spectra in Heavy Ion Collisions at GSI-FAIR Energies. Acta Physica Hungarica A Heavy Ion Physics, 2006, 27, 451-458.	0.4	15
155	Elliptic flow analysis at RHIC with the Lee–Yang zeros method in a relativistic transport approach. Journal of Physics G: Nuclear and Particle Physics, 2006, 32, 2181-2186.	3.6	15
156	Detecting quark gluon plasma with charge transfer fluctuations. Physical Review C, 2006, 73, .	2.9	15
157	Iransport model study of the		

#	Article	IF	Citations
163	Transport model analysis of particle correlations in relativistic heavy ion collisions at femtometer scales. Physical Review C, 2006, 73, .	2.9	14
164	The effect of dynamical parton recombination on event-by-event observables. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 660, 197-201.	4.1	14
165	Exclusion of black hole disaster scenarios at the LHC. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 672, 71-76.	4.1	14
166	Correspondence between Hanbury-Brown–Twiss radii and the emission zone in noncentral heavy ion collisions. Physical Review C, 2011, 84, .	2.9	14
167	Title is missing!. Acta Physica Polonica B, 2012, 43, 731.	0.8	14
168	Formation of exotic baryon clusters in ultrarelativistic heavy-ion collisions. Physical Review C, 2017, 96, .	2.9	14
169	Conserved charge fluctuations are not conserved during the hadronic phase. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 776, 32-37.	4.1	14
170	Entropy production and reheating at the chiral phase transition. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 790, 557-562.	4.1	14
171	Nonthermal direct photons in Pb+Pb at 160A GeV from microscopic transport theory. Physical Review C, 1998, 57, 3271-3275.	2.9	13
172	Strangeness enhancement from strong color fields at relativistic heavy ion energies. Physical Review C, 2000, 62, .	2.9	13
173	Strangeness dynamics in relativistic nucleus–nucleus collisions. Progress in Particle and Nuclear Physics, 2004, 53, 225-237.	14.4	13
174	Transverse pressure and strangeness dynamics in relativistic heavy-ion reactions. Journal of Physics G: Nuclear and Particle Physics, 2005, 31, S709-S716.	3.6	13
175	Charmonium production in antiproton-nucleus reactions at low energies. Physical Review C, 2013, 87, .	2.9	13
176	Heavy quark transport at RHIC and LHC. Journal of Physics: Conference Series, 2013, 426, 012032.	0.4	13
177	Energy, centrality, and momentum dependence of dielectron production at collider energies in a coarse-grained transport approach. Physical Review C, 2016, 94, .	2.9	13
178	Higher order net-proton number cumulants dependence on the centrality definition and other spurious effects. Journal of Physics G: Nuclear and Particle Physics, 2018, 45, 025101.	3.6	13
179	Statistical production and binding energy of hypernuclei. Physical Review C, 2018, 98, .	2.9	13
180	Probing chemical freeze-out criteria in relativistic nuclear collisions with coarse grained transport simulations. European Physical Journal A, 2020, 56, 1.	2.5	13

#	Article	IF	CITATIONS
181	Gribov-Regge theory, partons, remnants, strings $\hat{a} \in \text{``}$ and the EPOS model for hadronic interactions. Nuclear Physics, Section B, Proceedings Supplements, 2009, 196, 36-43.	0.4	12
182	Direct photon calculations in heavy-ion collisions at sNN=62.4Ato200AGeV in a $(3+1)$ -dimensional hybrid approach. Physical Review C, 2010, 82, .	2.9	12
183	Relativistic hydrodynamics on graphic cards. Computer Physics Communications, 2013, 184, 311-319.	7.5	12
184	Three-fluid Hydrodynamics-based Event Simulator Extended by UrQMD final State interactions (THESEUS) for FAIR-NICA-SPSBES/RHIC energies. EPJ Web of Conferences, 2018, 182, 02056.	0.3	12
185	Understanding the energy dependence of \$\$B_2\$\$ in heavy ion collisions: interplay of volume and space-momentum correlations. European Physical Journal A, 2021, 57, 1.	2.5	12
186	A first estimate of î·/s in Au+Au reactions at Elabâ€=â€1.23 AGeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 817, 136285.	4.1	12
187	Deuteron and antideuteron coalescence in heavy-ion collisions: energy dependence of the formation geometry. European Physical Journal A, 2020, 56, 1 .	2.5	12
188	Comparison of heavy ion transport simulations: Ag + Ag collisions at E $\langle sub \rangle ab \langle /sub \rangle = 1.58A$ GeV. Journal of Physics G: Nuclear and Particle Physics, 2022, 49, 055108.	3.6	12
189	Deuteron production in ultrarelativistic heavy-ion collisions: A comparison of the coalescence and the minimum spanning tree procedure. Physical Review C, 2022, 105, .	2.9	12
190	A chiral mean-field equation-of-state in UrQMD: effects on the heavy ion compression stage. European Physical Journal C, 2022, 82, 1.	3.9	12
191	Dissociation of J/psi by mesons: thermal versus nonequilibrium scenario. Journal of Physics G: Nuclear and Particle Physics, 1999, 25, 2351-2359.	3.6	11
192	Dissociation of expanding states in heavy ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 458, 137-142.	4.1	11
193	Equilibrium and non-equilibrium effects in relativistic heavy ion collisions Nuclear Physics A, 1999, 661, 600-603.	1.5	11
194	Tevatron\$mdash\$probing TeV-scale gravity today. Journal of Physics G: Nuclear and Particle Physics, 2002, 28, 1657-1665.	3.6	11
195	EOS at FAIR energies and the role of resonances. Journal of Physics G: Nuclear and Particle Physics, 2009, 36, 064065.	3.6	11
196	Elliptic flow in an integrated (3+1)d microscopic + macroscopic approach with fluctuating initial conditions. European Physical Journal C, 2009, 62, 31-36.	3.9	11
197	Influence of an inhomogeneous and expanding medium on signals of the QCD phase transition. Nuclear Physics A, 2013, 904-905, 899c-902c.	1.5	11
198	3+1 dimensional viscous hydrodynamics at high baryon densities. Journal of Physics: Conference Series, 2014, 503, 012040.	0.4	11

#	Article	IF	Citations
199	Broadening of the chiral critical region in a hydrodynamically expanding medium. European Physical Journal A, 2018, 54, 1.	2.5	11
200	Transport model analysis of the transverse momentum and rapidity dependence of pion interferometry at SPS energies. Journal of Physics G: Nuclear and Particle Physics, 2007, 34, 537-548.	3.6	10
201	Pion freeze-out as seen through HBT correlations in heavy ion collisions from FAIR/AGS to RHIC energies. Journal of Physics G: Nuclear and Particle Physics, 2007, 34, 2037-2044.	3.6	10
202	Double parton scattering: Impact of nonperturbative parton correlations. Physical Review D, 2016, 93, .	4.7	10
203	Constraining high energy interaction mechanisms by studying forward hadron production at the LHC. Physical Review D, 2016, 94, .	4.7	10
204	Resonance production in high energy collisions from small to big systems. EPJ Web of Conferences, 2018, 171, 09002.	0.3	10
205	Production of light hypernuclei with light-ion beams and targets. Physical Review C, 2018, 98, .	2.9	10
206	Delta mass shift as a thermometer of kinetic decoupling in Au + Au reactions at 1.23 AGeV. Journal of Physics G: Nuclear and Particle Physics, 2019, 46, 105107.	3.6	10
207	Kolmogorov-Smirnov test and its use for the identification of fireball fragmentation. Physical Review C, 2009, 80, .	2.9	9
208	The low-energy frontier: what is exciting about physics below the top RHIC energy. Journal of Physics G: Nuclear and Particle Physics, 2011, 38, 124035.	3.6	9
209	Twisted emission geometry in noncentral Pb + Pb collisions measurable via azimuthally sensitive Hanbury-Brown–Twiss correlations. Physical Review C, 2014, 89, .	2.9	9
210	Hadron resonance production and final state hadronic interactions with UrQMD at LHC. EPJ Web of Conferences, 2015, 97, 00026.	0.3	9
211	Î" resonances in Ca+Ca, Ni+Ni and Au+Au reactions from 1 AGeV to 2 AGeV: Consistency between yields, mass shifts and decoupling temperatures. Nuclear Physics A, 2021, 1007, 122058.	1.5	9
212	Production of Î~+(1540) and Ξ pentaquark states in proton–proton interactions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 595, 288-292.	4.1	8
213	Canonical strangeness suppression in microscopic transport models. Physical Review C, 2006, 74, .	2.9	8
214	How to create black holes on Earth. European Journal of Physics, 2007, 28, 509-516.	0.6	8
215	Negative elliptic flow of Jſi^'s: A qualitative signature for charm collectivity at RHIC. European Physical Journal A, 2009, 39, 1-4.	2.5	8
216	Elliptic flow fluctuations in heavy ion collisions and the perfect fluid hypothesis. Physical Review C, 2010, 82, .	2.9	8

#	Article	IF	CITATIONS
217	Determination of the structure of the X(3872) in $p\hat{A}^-A$ collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 749, 35-43.	4.1	8
218	Color transparency inï€â^'-induced dilepton production on nuclei. Physical Review C, 2016, 93, .	2.9	8
219	Distributions of deposited energy and ionization clusters around ion tracks studied with Geant4 toolkit. Physics in Medicine and Biology, 2016, 61, 3698-3711.	3.0	8
220	Coupling dynamical and statistical mechanisms for baryonic cluster production in nucleus collisions of intermediate and high energies. Physical Review C, 2021, 103, .	2.9	8
221	A microscopic calculation of secondary Drell-Yan production in heavy ion collisions. European Physical Journal C, 1998, 5, 349.	3.9	8
222	Physics in the baryon-rich regime. Nuclear Physics A, 1995, 590, 271-289.	1.5	7
223	Transition to resonance-rich matter in heavy-ion collisions at RHIC energies. Journal of Physics G: Nuclear and Particle Physics, 2001, 27, 421-426.	3.6	7
224	Multi-strange baryon production in Au+Au collisions near threshold. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 586, 297-302.	4.1	7
225	Gravitational radiation from ultra high energy cosmic rays in models with large extra dimensions. Astroparticle Physics, 2006, 25, 291-297.	4.3	7
226	Studying the energy dependence of elliptic and directed flow within a relativistic transport approach. European Physical Journal C, 2007, 49, 91-96.	3.9	7
227	Evidence for thea1meson being a difficult messenger for the restoration of chiral symmetry. Physical Review C, 2008, 78, .	2.9	7
228	Dilepton production at SIS energies with the UrQMD model. Journal of Physics: Conference Series, 2013, 426, 012033.	0.4	7
229	Unparticle contribution to the hydrogen atom ground state energy. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 759, 589-592.	4.1	7
230	Rapidity gap survival in enhanced Pomeron scheme. European Physical Journal C, 2018, 78, 67.	3.9	7
231	Event-by-event fluctuations in p+p and central A+A collisions within relativistic transport models. Journal of Physics G: Nuclear and Particle Physics, 2018, 45, 115104.	3.6	7
232	Panel Discussion, "The Duel― The Good, the Bad, and the Ugly of Gravity and Information. Springer Proceedings in Physics, 2018, , 13-35.	0.2	7
233	Shear transport far from equilibrium via holography. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 811, 135973.	4.1	7
234	EQUILIBRATION OF MATTER IN RELATIVISTIC HEAVY-ION COLLISIONS. International Journal of Modern Physics E, 2007, 16, 777-786.	1.0	6

#	Article	IF	CITATIONS
235	Fluctuation signals and the critical point. Journal of Physics G: Nuclear and Particle Physics, 2011, 38, 124150.	3.6	6
236	QUANTUM GRAVITY SIGNALS IN NEUTRINO OSCILLATIONS. International Journal of Modern Physics E, 2011, 20, 1-6.	1.0	6
237	Nanolesions induced by heavy ions in human tissues: Experimental and theoretical studies. Beilstein Journal of Nanotechnology, 2012, 3, 556-563.	2.8	6
238	Miniâ€review on miniâ€black holes from the miniâ€Big Bang. Astronomische Nachrichten, 2014, 335, 605-611.	1.2	6
239	AdS/CFT far from equilibrium in a Vaidya setup. Journal of Physics: Conference Series, 2017, 942, 012020.	0.4	6
240	Final state hadronic rescattering with UrQMD. EPJ Web of Conferences, 2018, 171, 05003.	0.3	6
241	The QCD Phase Diagram from Statistical Model Analysis. Nuclear Physics A, 2019, 982, 827-830.	1.5	6
242	Temperatures and chemical potentials at kinetic freeze-out in relativistic heavy ion collisions from coarse grained transport simulations. Journal of Physics G: Nuclear and Particle Physics, 2020, 47, 025104.	3.6	6
243	Sensitivity of the final resonance spectra on the hydrodynamical freeze out. EPJ Web of Conferences, 2012, 36, 00002.	0.3	6
244	Effects of the QCD phase transition on hadronic observables in relativistic hydrodynamic simulations of heavy-ion reactions in the FAIR/NICA energy regime. European Physical Journal: Special Topics, 2020, 229, 3537-3550.	2.6	6
245	Harmonic flow correlations in Au+Au reactions at 1.23 AGeV: a new testing ground for the equation-of-state and expansion geometry. European Physical Journal C, 2022, 82, .	3.9	6
246	Equilibrium and non-equilibrium effects in nucleus–nucleus collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 459, 660-666.	4.1	5
247	Novel Mechanism of HODibaryon Production in Proton-Proton Interactions from Parton-Based Gribov-Regge Theory. Physical Review Letters, 2004, 92, 072301.	7.8	5
248	Is constituent quark scaling a unique sign of parton recombination?. European Physical Journal C, 2007, 49, 303-308.	3.9	5
249	POPULATION OF MULTI-QUARK STATES IN EXOTIC MULTIPLETS AND THERMALIZATION IN ULTRA-RELATIVISTIC HEAVY ION COLLISIONS. International Journal of Modern Physics E, 2008, 17, 965-1014.	1.0	5
250	High- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi></mml:mi></mml:mrow>as a possibility to explore hot and dense nuclear matter. Physical Review C, 2010, 82, .</mml:math>	/> 2/9 nml:n	ns ø b>
251	Transport and hydrodynamic calculations of direct photons at FAIR. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 695, 489-494.	4.1	5
252	Effects of nuclear absorption on the $\hat{b}\hat{A}^-/p\hat{A}^-$ ratio in relativistic heavy-ion collisions. Physical Review C, 2012, 85, .	2.9	5

#	Article	IF	CITATIONS
253	Possibility for Ji suppression in high-multiplicity proton-proton collisions at sNN=7TeV. Physical Review C, 2013, 87, .	2.9	5
254	UrQMD calculations of two-pion HBT correlations in p+p and Pb+Pb collisions at LHC energies. Journal of Physics: Conference Series, 2013, 420, 012039.	0.4	5
255	Beam energy scan using a viscous hydro+cascade model. Journal of Physics: Conference Series, 2014, 509, 012067.	0.4	5
256	The QCD phase transition in a fully dynamical model of heavy-ion collisions. Journal of Physics: Conference Series, 2014, 509, 012065.	0.4	5
257	Influence of kinematic cuts on the net charge distribution. Nuclear Physics A, 2016, 956, 336-339.	1.5	5
258	Effects of EoS in viscous hydro + cascade model for the RHIC Beam Energy Scan. Nuclear Physics A, 2016 956, 834-837.	'1.5	5
259	Lateral variations of radiobiological properties of therapeutic fields of ¹ H, ⁴ He, ¹² C and ¹⁶ O ions studied with Geant4 and microdosimetric kinetic model. Physics in Medicine and Biology, 2017, 62, 5884-5907.	3.0	5
260	Elliptic flow and \$\$R_{AA}\$\$ of \$\$ext {D}\$\$ mesons at FAIR comparing the UrQMD hybrid model and the coarse-graining approach. European Physical Journal C, 2019, 79, 52.	3.9	5
261	Constraints on the String T-Duality Propagator from the Hydrogen Atom. Symmetry, 2019, 11, 1478.	2.2	5
262	Hadronic resonance production and interaction in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi><mml:mtext>â^'</mml:mtext><mml:collisions .<="" 104,="" 2021,="" at="" c,="" energies="" epos3.="" in="" lhc="" physical="" review="" td=""><td>n2i.9Pb<td>rāl:mi></td></td></mml:collisions></mml:math>	n 2i. 9Pb <td>rāl:mi></td>	r ā l:mi>
263	Evolution of the statistical disintegration of finite nuclei toward high energy. Physical Review C, 2022, 106, .	2.9	5
264	Bremsstrahlung from a microscopic model of relativistic heavy ion collisions. Physical Review C, 2000, 63, .	2.9	4
265	An introduction to mini black holes at LHC. Brazilian Journal of Physics, 2007, 37, 836-839.	1.4	4
266	Classical gravitational radiation from quasi-elastic particle scattering in models with extra dimensions. JETP Letters, 2008, 87, 67-72.	1.4	4
267	Decreasing elliptic flow at the CERN Large Hadron Collider: Calculations in a parton recombination approach. Physical Review C, 2008, 78, . i•-meson production in In–In collisions at <mml:math< td=""><td>2.9</td><td>4</td></mml:math<>	2.9	4
268	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:msub><mml:mi>E</mml:mi><mml:mi mathvariant="normal">lab</mml:mi></mml:msub> <mml:mo>=</mml:mo> <mml:mn>158</mml:mn> <mml:mi>A< Evidence for relics of a thermal phase. Physics Letters, Section B: Nuclear, Elementary Particle and</mml:mi>	/4.1 /mml:mi>	4mml:mtext
269	High-Energy Physics, 2010, 687, 320-326. Formation time dependence of femtoscopic Ï∈Ï∈ correlations in p+p collisions at \$sqrt{s_{NN}}\$ = 7 TeV. Journal of Physics G: Nuclear and Particle Physics, 2012, 39, 065101.	3.6	4
270	Monte Carlo simulations of Microdosimetry for Space Research at FAIR. Journal of Physics: Conference Series, 2013, 426, 012006.	0.4	4

#	Article	IF	Citations
271	Polarized mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">i‡/mml:mi>i‡/mml:mi>i†/mml:mi>i†/mml:mi>i†/mml:mi>i†/mml:mi>i†/mml:mi>i†/mml:mi>i†i†i†<a hre<="" td=""><td>∙∝∮mml:m</td><td>.i4<mml:mr< td=""></mml:mr<></td>	∙ ∝∮ mml:m	.i4 <mml:mr< td=""></mml:mr<>
272	Strangeness in Quark Matter: Opening Talk. Journal of Physics: Conference Series, 2014, 509, 012002.	0.4	4
273	Evolution of the moments of multiplicity distributions. Physical Review C, 2018, 98, .	2.9	4
274	Magneto-hydrodynamic simulations of Heavy Ion Collisions with ECHO-QGP. Journal of Physics: Conference Series, 2018, 1024, 012043.	0.4	4
275	Taming the Energy Rise of the Total Proton-Proton Cross-Section. Universe, 2019, 5, 106.	2.5	4
276	Transport model calculations of deuteron production in relativistic hadron and heavyâ€ion collisions. Astronomische Nachrichten, 2019, 340, 977-982.	1.2	4
277	Evaluation of hypernuclei in relativistic ion collisions. European Physical Journal A, 2020, 56, 1.	2.5	4
278	Constraining resonance properties through kaon production in pion–nucleus collisions at low energies. Journal of Physics G: Nuclear and Particle Physics, 2021, 48, 025109.	3.6	4
279	Intermediate mass dileptons from secondary Drell-Yan processes. Nuclear Physics A, 1998, 638, 507c-510c.	1.5	3
280	Exploring isospin, strangeness and charm distillation in nuclear collisions. Nuclear Physics A, 2003, 722, C142-C147.	1.5	3
281	Is the existence of a softest point in the directed flow excitation function an unambiguous signal for the creation of a quark–gluon plasma?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 612, 201-206.	4.1	3
282	Elliptic flow and constituent quark scaling from hadron-string transport models. Journal of Physics G: Nuclear and Particle Physics, 2006, 32, S365-S371.	3.6	3
283	Early black hole signals at the LHC. AIP Conference Proceedings, 2007, , .	0.4	3
284	The use of Kolmogorov-Smirnov test in event-by-event analysis. Nuclear Physics A, 2009, 830, 195c-198c.	1.5	3
285	A transport calculation with an embedded (3+1)d hydrodynamic evolution: Elliptic flow as a function of transverse momentum at SPS energies. Nuclear Physics A, 2009, 830, 283c-286c.	1.5	3
286	Validity of the hadronic freeze-out curve. Journal of Physics G: Nuclear and Particle Physics, 2011, 38, 124075.	3.6	3
287	MICRO BLACK HOLES IN THE LABORATORY. International Journal of Modern Physics E, 2011, 20, 7-14.	1.0	3
288	Anti- and Hypermatter Research at the Facility for Antiproton and Ion Research FAIR. Journal of Physics: Conference Series, 2012, 389, 012022.	0.4	3

#	Article	IF	Citations
289	Stability of transport models under changes of resonance parameters: A study with the ultrarelativistic quantum molecular dynamics model. Physical Review C, 2012, 85, .	2.9	3
290	The Physics of EPOS. EPJ Web of Conferences, 2013, 52, 05001.	0.3	3
291	Medium information from anisotropic flow and jet quenching in relativistic heavy ion collisions. Journal of Physics: Conference Series, 2013, 420, 012027.	0.4	3
292	Relativistic ion collisions as the source of hypernuclei. European Physical Journal A, 2016, 52, 1.	2.5	3
293	Unruh thermal hadronization and the cosmological constant. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 780, 93-99.	4.1	3
294	Susceptibilities of strongly interacting matter in a finite volume. Journal of Physics G: Nuclear and Particle Physics, 2019, 46, 025101.	3.6	3
295	Transverse momentum and rapidity dependence of collective flow harmonics of protons and deuterons in Au + Au reactions at 1.23 AGeV. Astronomische Nachrichten, 2019, 340, 996-1000.	1.2	3
296	A hadronic transport analysis on the Δ mass in Au + Au reactions at 1.23 AGeV. Astronomische Nachrichten, 2019, 340, 1018-1022.	1.2	3
297	Hybrid Modeling of Heavy-ion Collisions in UrQMD. Acta Physica Polonica B, Proceedings Supplement, 2014, 7, 173.	0.1	3
298	Physics Prospects at FAIR. , 2013, , .		3
299	Charge transfer fluctuations as a QGP probe. Journal of Physics: Conference Series, 2005, 27, 194-203.	0.4	2
300	Determination of the fundamental scale of gravity and the number of space–time dimensions from high energetic particle interactions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 608, 240-243.	4.1	2
301	LARGE EXTRA DIMENSIONS AND THE MINIMAL SCALE CONSTRAINTS THROUGH HIGH PRECISION EXPERIMENTS. International Journal of Modern Physics A, 2005, 20, 3334-3336.	1.5	2
302	Excitation Function of the Longitudinal Expansion in Central Nuclear Collisions. Journal of Physics: Conference Series, 2006, 50, 410-413.	0.4	2
303	The gravitational analogue to the hydrogen atom. European Journal of Physics, 2007, 28, 465-478.	0.6	2
304	Collision Dynamics. Lecture Notes in Physics, 2011, , 531-680.	0.7	2
305	Non-equilibrium fluctuations at the QCD phase transition. Journal of Physics: Conference Series, 2011, 270, 012059.	0.4	2
306	System size dependence of the non-monotonous pion freeze-out volume excitation function. Open Physics, 2012, 10, .	1.7	2

#	Article	IF	CITATIONS
307	Recent developments on the UrQMD hybrid model. Physics of Atomic Nuclei, 2012, 75, 759-763.	0.4	2
308	Dilepton Production in Transport Calculations and Coarse-Grained Dynamics. Journal of Physics: Conference Series, 2014, 503, 012039.	0.4	2
309	Dilepton Production in Transport-based Approaches. Journal of Physics: Conference Series, 2015, 612, 012039.	0.4	2
310	Recent results from strangeness in transport models. Journal of Physics: Conference Series, 2016, 668, 012007.	0.4	2
311	Sub-threshold strangeness and charm production in UrQMD. Journal of Physics: Conference Series, 2017, 779, 012017.	0.4	2
312	Production of \$ Lambda \hat{s} -hypernuclei and evaluation of their binding energies via the double yield ratio. European Physical Journal A, 2019, 55, 1.	2.5	2
313	Effects of fluctuations and color neutrality in a finite volume. Astronomische Nachrichten, 2019, 340, 866-871.	1.2	2
314	Early-Stage Shear Viscosity far from Equilibrium via Holography. Nuclear Physics A, 2021, 1005, 121880.	1.5	2
315	Modeling (anti)deuteron formation at RHIC with a geometric coalescence model. Physica Scripta, 2021, 96, 124002.	2.5	2
316	The QCD Phase Diagram from Statistical Model Analysis. , 2018, , 41-64.		2
317	PRODUCTION AND EVAPORATION OF PLANCK SCALE BLACK HOLES AT THE LHC. , 2015, , .		2
318	Longitudinal flow and onset of deconfinement., 2007,,.		2
319	On the survey of nuclei and hypernuclei in multifragmentation. Physica Scripta, 2020, 95, 075311.	2.5	2
320	Excitation function of energy density and partonic degrees of freedom in relativistic heavy ion collisions. Nuclear Physics A, 1998, 642, c121-c129.	1.5	1
321	Event-by-Event Fluctuations in Heavy Ion Collisions. Acta Physica Hungarica A Heavy Ion Physics, 2001, 14, 227-237.	0.4	1
322	Current Status of Quark –Gluon Plasma Signals. Acta Physica Hungarica A Heavy Ion Physics, 2001, 14, 425-438.	0.4	1
323	Anti-\$Omega\$ dominance in pp interactions at intermediate energies. Journal of Physics G: Nuclear and Particle Physics, 2002, 28, 1965-1969.	3.6	1
324	OBSERVABLES FROM LARGE EXTRA DIMENSIONS. International Journal of Modern Physics D, 2004, 13, 1453-1460.	2.1	1

#	Article	IF	Citations
325	Collective Flow signals the Quark Gluon Plasma. AIP Conference Proceedings, 2004, , .	0.4	1
326	Resonance Multiplicities in a Hadron Transport Approach. Acta Physica Hungarica A Heavy Ion Physics, 2006, 27, 421-426.	0.4	1
327	Radial and Elliptic Flow in High Energetic Nuclear Collisions. AIP Conference Proceedings, 2006, , .	0.4	1
328	Baryon-Strangeness Correlations from Hadron/String- and Quark-Dynamics. AIP Conference Proceedings, 2007, , .	0.4	1
329	Strange and non-strange particle production in antiproton–nucleus collisions in the UrQMD model. Journal of Physics G: Nuclear and Particle Physics, 2009, 36, 064049.	3.6	1
330	Strangeness production at SPS energies in a (3+1)-dimensional Boltzmann+hydrodynamics approach. Journal of Physics G: Nuclear and Particle Physics, 2010, 37, 094038.	3.6	1
331	Strangeness production in hadronic models and recombination models. Journal of Physics G: Nuclear and Particle Physics, 2010, 37, 094010.	3.6	1
332	Hybrid approaches to heavy ion collisions and future perspectives. EPJ Web of Conferences, 2011, 13, 06001.	0.3	1
333	Multi-particle interactions within the UrQMD approach. EPJ Web of Conferences, 2011, 13, 06002.	0.3	1
334	Low mass dimuons within a hybrid approach. Journal of Physics: Conference Series, 2011, 270, 012040.	0.4	1
335	MICRO BLACK HOLES IN THE LABORATORY AND OTHER EXPERIMENTAL SIGNATURES OF QUANTUM GRAVITY. International Journal of Modern Physics E, 2011, 20, 85-93.	1.0	1
336	Resonance studies with the UrQMD model. EPJ Web of Conferences, 2012, 36, 00019.	0.3	1
337	Jets, Bulk Matter, and their Interaction in Heavy Ion Collisions at the LHC. Journal of Physics: Conference Series, 2013, 422, 012001.	0.4	1
338	Modeling a delayed phase transition in the early universe. Journal of Physics G: Nuclear and Particle Physics, 2014, 41, 125005.	3.6	1
339	3+1 dimensional viscous hydrodynamics at high baryon densities. Journal of Physics: Conference Series, 2015, 612, 012052.	0.4	1
340	In-medium Spectral Functions in a Coarse-Graining Approach. Journal of Physics: Conference Series, 2015, 599, 012020.	0.4	1
341	Electromagnetic probes in heavy-ion collisions. EPJ Web of Conferences, 2015, 97, 00028.	0.3	1
342	Vector Meson Spectral Functions in a Coarse-Graining Approach. EPJ Web of Conferences, 2015, 97, 00014.	0.3	1

#	Article	IF	CITATIONS
343	Appearance of Hagedorn limiting temperature in microscopic model calculations. EPJ Web of Conferences, 2016, 126, 03006.	0.3	1
344	Test of the $X(3872)$ structure in antiproton-nucleus collisions. AIP Conference Proceedings, 2016, , .	0.4	1
345	Estimating Å«/s of QCD matter at high baryon densities. Journal of Physics: Conference Series, 2016, 668, 012063.	0.4	1
346	Testing charm quark equilibration in ultrahigh-energy heavy ion collisions with fluctuations. Physical Review C, 2018, 97, .	2.9	1
347	Secondary Drell–Yan dileptons in heavy-ion reactions. International Journal of Modern Physics E, 2019, 28, 1950047.	1.0	1
348	Formation of hypernuclei in relativistic ion, hadron and lepton collisions. AIP Conference Proceedings, 2019, , .	0.4	1
349	Black Holes and High Energy Physics: From Astrophysics to Large Extra Dimensions. , 2018, , 359-373.		1
350	Hadronic Freeze-Out in A+A Collisions meets the Lattice QCD Parton-Hadron Transition Line. , $2013, \dots$		1
351	Studies of Dilepton Production in Coarse-Grained Transport Dynamics. , 2013, , .		1
352	Title is missing!. Acta Physica Polonica B, Proceedings Supplement, 2011, 4, 609.	0.1	1
353	Clusters and higher moments of proton number fluctuations. , 2018, , .		1
354	Proton number fluctuations in partial chemical equilibrium. Physical Review C, 2021, 104, .	2.9	1
355	Scaling properties of flow harmonics of deuterons and protons in Au+Au reactions at 1.23 AGeV. Journal of Physics: Conference Series, 2020, 1667, 012013.	0.4	1
356	Flavor hierarchy at the chemical freeze-out from UrQMD. EPJ Web of Conferences, 2022, 259, 10005.	0.3	1
357	Triple nuclear collisions – a new method to explore the matter properties under new extreme conditions. EPJ Web of Conferences, 2022, 259, 13012.	0.3	1
358	Physics opportunities at RHIC and LHC. , 1999, , .		0
359	Signals of deconfinement? Strangeness and flow in heavy ion collisions. AIP Conference Proceedings, 2001, , .	0.4	0
360	Hadron ratios: Chiral symmetry restauration vs. nonequilibrium quark dynamics. AIP Conference Proceedings, 2001, , .	0.4	0

#	Article	IF	CITATIONS
361	Transverse Pressure in Relativistic Nuclear Collisions: Evidence for Partonic Interactions?. Acta Physica Hungarica A Heavy Ion Physics, 2005, 24, 181-188.	0.4	O
362	BLACK HOLES AND QUASISTABLE REMNANTS AT THE LHC. , 2006, , .		0
363	Forward-Backward Charge Fluctuations at RHIC Energies. AIP Conference Proceedings, 2007, , .	0.4	0
364	Correlations and fluctuations of conserved charges in a dynamical recombination approach. Journal of Physics G: Nuclear and Particle Physics, 2008, 35, 044066.	3.6	0
365	Direct photon emission from hadronic sources: hydrodynamics vs.Âtransport theory. European Physical Journal C, 2009, 62, 75-80.	3.9	0
366	Calculations of direct photon emission in heavy ion collisions at = 200 GeV. Journal of Physics: Conference Series, 2010, 230, 012033.	0.4	0
367	AN INTEGRATED HYDRO AND BOLTZMANN APPROACH TO HEAVY ION REACTIONS. International Journal of Modern Physics D, 2010, 19, 1651-1659.	2.1	0
368	HBT radii from the UrQMD transport approach at different energies. EPJ Web of Conferences, 2011, 13, 06003.	0.3	0
369	Direct Photons from a Hybrid Approach - Exploring the parameter space. Journal of Physics: Conference Series, 2011, 270, 012031.	0.4	0
370	Separating jets from bulk matter in heavy ion collisions at the LHC. Journal of Physics: Conference Series, 2012, 389, 012040.	0.4	0
371	Femtoscopy within a hydrodynamic approach based on flux tube initial conditions. Physics of Particles and Nuclei Letters, 2012, 9, 244-247.	0.4	0
372	Recent HBT Results from a Hybrid Transport Approach to Heavy Ion Reactions., 2013,, 237-242.		0
373	Signals for the QCD phase transition and critical point in a Langevin dynamical model. Journal of Physics: Conference Series, 2013, 426, 012008.	0.4	0
374	Charmonium production inpì,,-induced reactions on nuclei. EPJ Web of Conferences, 2014, 81, 04007.	0.3	0
375	How spinodal decomposition influences observables at FAIR energies. Journal of Physics: Conference Series, 2014, 503, 012004.	0.4	0
376	Particle Production in Nuclear Collisions: Hadronization and QCD. Journal of Physics: Conference Series, 2014, 556, 012021.	0.4	0
377	Radiation quality of cosmic ray nuclei studied with Geant4-based simulations. Journal of Physics: Conference Series, 2014, 503, 012021.	0.4	0
378	Spinodal density enhancements in nuclear collisions at the CBM experiment. Journal of Physics: Conference Series, 2015, 599, 012014.	0.4	0

#	Article	IF	CITATIONS
379	Dileptons in a coarse-grained transport approach. Journal of Physics: Conference Series, 2016, 668, 012059.	0.4	O
380	Subâ€threshold charm and strangeness production at <scp>GSI</scp> / <scp>FAIR</scp> energies. Astronomische Nachrichten, 2017, 338, 1101-1104.	1.2	0
381	The QCD Phase Diagram and Hadron Formation in Relativistic Nuclear Collisions. , 2017, , 139-150.		0
382	Processes of hypernuclei formation in relativistic ion collisions. EPJ Web of Conferences, 2018, 171, 13001.	0.3	0
383	Theory of hot matter and relativistic heavy-ion collisions (THOR). European Physical Journal A, 2021, 57, 1.	2.5	0
384	CURRENT STATUS OF QUARK GLUON PLASMA SIGNALS. , 2001, , .		0
385	Review of QGP Signatures — Ideas Versus Observables. , 2004, , 239-254.		0
386	Signatures of Large Extra Dimensions. , 2004, , 577-584.		0
387	COSMIC NEUTRINOS BEYOND THE STANDARD MODEL. , 2006, , .		0
388	Transport Model Analysis of Fluctuations: Baryon-Strangeness Correlations and the Cumulant Method for Elliptic Flow Calculations. , 2007, , .		0
389	The Effect of Dynamical Parton Recombination on Event-by-Event Observables. , 2008, , .		O
390	10.1007/s11448-008-2001-9., 2010, 87, 67.		0
391	Direct Photons in Heavy Ion Collisions from transport theory and hybrid model calculations. , 2010, , .		O
392	Title is missing!. Acta Physica Polonica B, Proceedings Supplement, 2012, 5, 1191.	0.1	0
393	Title is missing!. Acta Physica Polonica B, Proceedings Supplement, 2012, 5, 529.	0.1	0
394	Title is missing!. Acta Physica Polonica B, Proceedings Supplement, 2012, 5, 573.	0.1	0
395	Implications on the collision dynamics via azimuthal sensitive HBT from UrQMD. , 2012, , .		0
396	Dynamic Enhancement of Fluctuation Signals at the QCD Phase Transition. , 2013, , .		0

#	Article	IF	CITATIONS
397	Correlated D-meson decays competing against thermal QGP dilepton radiation. , 2013, , .		0
398	The beam energy dependence of collective flow in heavy ion collisions. , 2015, , .		0
399	Probing the QCD Phase Diagram with Dileptons a Study Using Coarse-grained Transport Dynamics. Acta Physica Polonica B, Proceedings Supplement, 2017, 10, 549.	0.1	0
400	Formation of Hypernuclei in Relativistic Ion Collisions. , 2017, , .		0
401	Planck scale black holes – Theory vs. observations. , 2017, , .		0
402	Benchmark values for net proton number fluctuations. , 2019, , .		0
403	Influence of Centrality Definition and Detector Efficiency on the Net-Proton Kurtosis. Springer Proceedings in Physics, 2020, , 335-343.	0.2	0
404	Photons from relativistic nuclear collisions. European Journal of Physics, 0, , .	0.6	0