Derek Dunn-Rankin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8582427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Personal power systems. Progress in Energy and Combustion Science, 2005, 31, 422-465.	31.2	256
2	Measurement and prediction of indoor air flow in a model room. Energy and Buildings, 2003, 35, 515-526.	6.7	249
3	Controlled Continuous Patterning of Polymeric Nanofibers on Three-Dimensional Substrates Using Low-Voltage Near-Field Electrospinning. Nano Letters, 2011, 11, 1831-1837.	9.1	209
4	Maximizing ion-driven gas flows. Journal of Electrostatics, 2006, 64, 368-376.	1.9	144
5	Miniature-scale liquid-fuel-film combustor. Proceedings of the Combustion Institute, 2002, 29, 925-931.	3.9	92
6	Characterization of ionic wind velocity. Journal of Electrostatics, 2005, 63, 711-716.	1.9	89
7	Ammonium bisulfate formation and reduced load SCR operation. Fuel, 2017, 206, 180-189.	6.4	88
8	Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater. Fuel, 2011, 90, 2445-2453.	6.4	69
9	Effects of capillary spacing on EHD spraying from an array of cone jets. Journal of Aerosol Science, 2002, 33, 1471-1479.	3.8	65
10	Visualizing CH* chemiluminescence in sooting flames. Combustion and Flame, 2013, 160, 2275-2278.	5.2	63
11	Flame structure in small-scale liquid film combustors. Proceedings of the Combustion Institute, 2007, 31, 3269-3275.	3.9	56
12	Ignition by excimer laser photolysis of ozone. Combustion and Flame, 1987, 69, 171-184.	5.2	51
13	Performance of a mesoscale liquid fuelâ€film combustionâ€driven TPV power system. Progress in Photovoltaics: Research and Applications, 2009, 17, 327-336.	8.1	51
14	Numerical prediction of ion current from a small methane jet flame. Combustion and Flame, 2009, 156, 1227-1233.	5.2	49
15	Detailed characterization of DC electric field effects on small non-premixed flames. Combustion and Flame, 2015, 162, 2865-2872.	5.2	41
16	Heat Transfer in Engines: Comparison of Cars Thermal Boundary Layer Measurements and Heat Flux Measurementsâ€. , 0, , .		40
17	Progress in miniature liquid film combustors: Double chamber and central porous fuel inlet designs. Experimental Thermal and Fluid Science, 2008, 32, 1118-1131.	2.7	40
18	Combustion Characteristics of Methane Hydrate Flames. Energies, 2019, 12, 1939.	3.1	40

#	Article	IF	CITATIONS
19	Using numerical simulation to predict ventilation efficiency in a model room. Energy and Buildings, 1998, 28, 43-50.	6.7	39
20	Extinction limits and structure of counterflow nonpremixed H2O-laden CH4/air flames. Energy, 2015, 93, 442-450.	8.8	39
21	Enhancing thermal, electrical efficiencies of a miniature combustionâ€driven thermophotovoltaic system. Progress in Photovoltaics: Research and Applications, 2009, 17, 502-512.	8.1	36
22	Characterizing sooting propensity in biofuel–diesel flames. Combustion and Flame, 2012, 159, 2181-2191.	5.2	36
23	Stages in the Dynamics of Hydrate Formation and Consequences for Design of Experiments for Hydrate Formation in Sediments. Energies, 2019, 12, 3399.	3.1	34
24	Modelling electric field driven convection in small combustion plasmas and surrounding gases. Combustion Theory and Modelling, 2008, 12, 23-44.	1.9	32
25	Behavior of a small diffusion flame as an electrically active component in a high-voltage circuit. Combustion and Flame, 2012, 159, 210-220.	5.2	32
26	Numerical simulation of particle size distribution evolution during pulverized coal combustion. Combustion and Flame, 1987, 69, 193-209.	5.2	31
27	Numerical simulation of a tubular ion-driven wind generator. Journal of Electrostatics, 2007, 65, 646-654.	1.9	30
28	Particle-wall collision in a viscoelastic fluid. Journal of Fluid Mechanics, 2009, 633, 475-483.	3.4	30
29	Combustion in a Meso-Scale Liquid-Fuel-Film Combustor with Central-Porous Fuel Inlet. Combustion Science and Technology, 2008, 180, 1900-1919.	2.3	29
30	Secondary air injection in miniature liquid fuel film combustors. Proceedings of the Combustion Institute, 2009, 32, 3091-3098.	3.9	29
31	Spatial averaging effects in CARS thermometry of a nonpremixed flame. Combustion and Flame, 1998, 115, 481-486.	5.2	28
32	Temperature field measurements of small, nonpremixed flames with use of an Abel inversion of holographic interferograms. Applied Optics, 2003, 42, 952.	2.1	26
33	Electrical aspects of flame quenching. Proceedings of the Combustion Institute, 2013, 34, 3295-3301.	3.9	25
34	Experimental Investigation ofa Rectilinear Droplet Stream Flame. Combustion Science and Technology, 1994, 100, 57-73.	2.3	24
35	Evidence for immobile transitional state of water in methane clathrate hydrates grown from surfactant solutions. Chemical Engineering Science, 2016, 142, 89-96.	3.8	23
36	Measurement and prediction of trajectories and collision of droplets. International Journal of Multiphase Flow, 1991, 17, 159-177.	3.4	22

#	Article	IF	CITATIONS
37	In Situ Light Scattering Measurements of Mainstream and Sidestream Cigarette Smoke. Aerosol Science and Technology, 1996, 24, 85-101.	3.1	22
38	CO emission from an impinging non-premixed flame. Combustion and Flame, 2016, 174, 16-24.	5.2	22
39	Turbine Burners: Performance Improvement and Challenge of Flameholding. AIAA Journal, 2012, 50, 1645-1669.	2.6	21
40	Effects of pressure on structure and extinction limits of counterflow nonpremixed water-laden methane/air flames. Energy, 2017, 134, 545-553.	8.8	21
41	Experiments examining drag in linear droplet packets. Experiments in Fluids, 1992, 12, 157-165.	2.4	20
42	Experimental investigation of air flow around blunt aerosol samplers. Journal of Aerosol Science, 1997, 28, 289-305.	3.8	20
43	Location of the Schlieren Image in Premixed Flames: Axially Symmetrical Refractive Index Fields. Combustion and Flame, 1998, 113, 303-311.	5.2	20
44	Burning Ice—Direct Combustion of Methane Clathrates. Combustion Science and Technology, 2016, 188, 2137-2148.	2.3	20
45	Temperature Measurement of Glowing Embers with Color Pyrometry. Fire Technology, 2019, 55, 1013-1026.	3.0	20
46	Potential role of atomic carbon in diamond deposition. Journal of Applied Physics, 1993, 74, 6941-6947.	2.5	17
47	Electric field-controlled mesoscale burners. Combustion and Flame, 2008, 152, 186-193.	5.2	16
48	Particle chaining and chain dynamics in viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 2012, 179-180, 1-8.	2.4	16
49	Analytical investigation of high temperature 1 kW solid oxide fuel cell system feasibility in methane hydrate recovery and deep ocean power generation. Applied Energy, 2016, 179, 909-928.	10.1	16
50	lon current and carbon monoxide release from an impinging methane/air coflow flame in an electric field. Combustion and Flame, 2019, 204, 250-259.	5.2	16
51	Particle Size Distribution of Nicotine in Mainstream Smoke from 2R4F, Marlboro Medium, and Quest1 Cigarettes under Different Puffing Regimens. Inhalation Toxicology, 2009, 21, 435-446.	1.6	15
52	Combustion of coal—water slurriesEvolution of particle size distribution for coals of different rank. Fuel, 1987, 66, 1139-1145.	6.4	14
53	Experimental investigation of a two-dimensional cylindrical sampler. Journal of Aerosol Science, 1994, 25, 935-955.	3.8	14
54	Breakup control of a liquid jet by disturbance manipulation. Physics of Fluids, 2010, 22, 107103.	4.0	14

#	Article	IF	CITATIONS
55	A transport model for nicotine in the tracheobronchial and pulmonary region of the lung. Inhalation Toxicology, 2010, 22, 42-48.	1.6	14
56	Ultra-short pulsed off-axis digital holography for imaging dynamic targets in highly scattering conditions. Applied Optics, 2017, 56, 3736.	2.1	14
57	Electric Field Induced Changes of a Diffusion Flame and Heat Transfer near an Impinging Surface. Energies, 2018, 11, 1235.	3.1	14
58	Influence of ash on particle size distribution evolution during coal combustion. Combustion and Flame, 1988, 74, 207-218.	5.2	13
59	Using coherent anti-Stokes Raman spectroscopy to probe the temperature field of a combusting droplet stream. Applied Optics, 1991, 30, 2672.	2.1	13
60	Engineering Design in Industry: Teaching Students and Faculty to Apply Engineering Science in Design. Journal of Engineering Education, 1998, 87, 219-222.	3.0	13
61	Overpressures from nondetonating, baffle-accelerated turbulent flames in tubes. Combustion and Flame, 2000, 120, 504-514.	5.2	13
62	N2 CARS thermometry and O2 LIF concentration measurements in a flame under electrically induced microbuoyancy. Combustion and Flame, 2003, 133, 241-254.	5.2	13
63	Inducing gas flow and swirl in tubes using ionic wind from corona discharges. Experiments in Fluids, 2006, 40, 231-237.	2.4	13
64	Hybrid femtosecond/picosecond pureâ€rotational coherent antiâ€5tokes Raman scattering with chirped probe pulses. Journal of Raman Spectroscopy, 2017, 48, 1881-1886.	2.5	13
65	Evaporation of a droplet larger than the Kolmogorov length scale immersed in a relative mean flow. International Journal of Multiphase Flow, 2017, 88, 63-68.	3.4	13
66	Emissions from Solid Fuel Cook Stoves in the HimalayaRegion. Energies, 2019, 12, 1089.	3.1	13
67	The role of dispersants in CWS agglomeration during combustion. Fuel, 1991, 70, 84-89.	6.4	12
68	Turbulent combustion in a curving, contracting channel with a cavity stabilized flame. Proceedings of the Combustion Institute, 2009, 32, 2973-2981.	3.9	11
69	Temperature profiles and extinction limits of a coflow water-vapor laden methane/air diffusion flame. Experiments in Fluids, 2018, 59, 1.	2.4	11
70	Kinetic Model for Simulating the Evolution of Particle Size Distributions During Char Combustion. Combustion Science and Technology, 1988, 58, 297-314.	2.3	10
71	Effect of droplet-induced breakdown on CARS temperature measurements. Applied Optics, 1990, 29, 3150.	2.1	10
72	The Effects of Bluntness and Orientation on Two-Dimensional Samplers in Calm Air. Aerosol Science and Technology, 1993, 19, 371-380.	3.1	10

#	Article	IF	CITATIONS
73	In-flight thermal control of molten metal droplet streams. International Journal of Heat and Mass Transfer, 2007, 50, 4554-4558.	4.8	10
74	Introduction and Perspectives. , 2008, , 1-18.		10
75	Simulating Gravity in Microgravity Combustion Using Electric Fields. Combustion Science and Technology, 2012, 184, 1891-1902.	2.3	10
76	Non-premixed axisymmetric flames driven by ion currents. Combustion and Flame, 2019, 199, 365-376.	5.2	10
77	LOW-COST WIND TUNNEL FOR AEROSOL INHALATION STUDIES. AIHA Journal, 1992, 53, 232-236.	0.4	9
78	Probing Dense Sprays with Gated, Picosecond, Digital Particle Field Holography. International Journal of Spray and Combustion Dynamics, 2011, 3, 351-366.	1.0	9
79	DROPLET STREAM DYNAMICS AT HIGH AMBIENT PRESSURE. Atomization and Sprays, 1996, 6, 485-497.	0.8	9
80	FEMTOSECOND DIGITAL HOLOGRAPHY IN THE NEAR-NOZZLE REGION OF A DODECANE SPRAY. Atomization and Sprays, 2019, 29, 251-267.	0.8	8
81	CARS Temperature Measurements in a Droplet Stream Flame. Combustion Science and Technology, 1992, 83, 97-114.	2.3	7
82	Using Large Electric Fields to Control Transport in Microgravity. Annals of the New York Academy of Sciences, 2006, 1077, 570-584.	3.8	7
83	Characterizing I-V Curves for Non-Premixed Methane Flames Stabilized on Different Burner Configurations. Combustion Science and Technology, 2017, 189, 1739-1750.	2.3	7
84	Experimental studies on combined production of CH ₄ and safe long-term storage of CO ₂ in the form of solid hydrate in sediment. Physical Chemistry Chemical Physics, 2021, 23, 23313-23324.	2.8	7
85	PLIF and chemiluminescence in a small laminar coflow methane-air diffusion flame at elevated pressures. Combustion and Flame, 2022, 243, 112067.	5.2	7
86	Inhaled Particle Mass per Unit Body Mass per Unit Time. Journal of Occupational and Environmental Hygiene, 1992, 7, 246-252.	0.4	6
87	Canceling Buoyancy of Gaseous Fuel Flames in a Gravitational Environment Using an Ion-Driven Wind. Annals of the New York Academy of Sciences, 2006, 1077, 585-601.	3.8	6
88	Syngas formation in methane flames and carbon monoxide release during quenching. Combustion and Flame, 2011, 158, 273-280.	5.2	6
89	Miniature Fuel Film Combustor: Swirl Vane Design and Combustor Characterization. Combustion Science and Technology, 2013, 185, 1464-1481.	2.3	5
90	Crossed Two-Beam Coherent Anti-Stokes Raman Spectroscopy in Dispersive Media. Applied Spectroscopy, 2003, 57, 93-99.	2.2	4

#	Article	IF	CITATIONS
91	Liquid Fuel Nonpremixed Swirl-Type Tubular Flame Burner. Combustion Science and Technology, 2023, 195, 1-12.	2.3	4
92	TOWARD A CONTROL MODEL FOR MANIPULATING THE BREAKUP OF A LIQUID JET. Atomization and Sprays, 2001, 11, 415-431.	0.8	4
93	Small-Scale HCCI Engine Operation. Combustion Science and Technology, 2011, 183, 928-946.	2.3	3
94	Impinging nonpremixed coflow methane–air flames with unity Lewis number. Proceedings of the Combustion Institute, 2017, 36, 1411-1419.	3.9	3
95	CONTROLLING LIQUID JET BREAKUP WITH PRACTICAL PIEZOELECTRIC DEVICES. Small Group Research, 2009, 19, 135-155.	2.7	3
96	Using Mie scattering for measuring size changes of individual particles. Journal of Physics E: Scientific Instruments, 1988, 21, 378-383.	0.7	2
97	Non-premixed swirl-type tubular flames burning liquid fuels. Journal of Fluid Mechanics, 2018, 846, 210-239.	3.4	2
98	COMPARISON OF WATER-IN-OIL EMULSION ATOMIZATION CHARACTERISTICS FOR LOW- AND HIGH-CAPACITY PRESSURE-SWIRL NOZZLES. Atomization and Sprays, 2011, 21, 391-410.	0.8	2
99	MODELING THE BREAKUP OF LIQUID JETS SUBJECTED TO PURE AND COMPOSITE DISTURBANCES. Atomization and Sprays, 2012, 22, 543-559.	0.8	2
100	Experimental Study of a Hybrid Electrohydrodynamic, Air-Assisted Liquid Atomizer. , 2002, , .		1
101	UCI Liquid Film Miniature Combustor. , 2009, , .		1
102	A Tubular-Flame Combustor for Thermophotovoltaic Power Systems. , 2011, , .		1
103	Professor Felix J. Weinberg, FRS (1928–2012). Combustion and Flame, 2013, 160, 993-994.	5.2	1
104	Flame Propagation in a Narrow Closed Channel: Effects of Aspect Ratios, Blockage Ratio, and Mixture Reactivity on Flame Speed and Pressure Dynamics. Combustion Science and Technology, 2020, 192, 986-996.	2.3	1
105	Spatially and temporally resolved diagnostics of dense sprays using gated, femtosecond, digital holography. , 2017, , .		1
106	Predicted Aerosol Aspiration Efficiency for Infants, Children, and Adults. Journal of Occupational and Environmental Hygiene, 1993, 8, 639-644.	0.4	0
107	Selected Presentations from the Twenty-First International Colloquium on the Dynamics of Explosions and Reactive Systems. Combustion Science and Technology, 2008, 180, 1693-1694.	2.3	0
108	Particle-Wall Interaction in a Viscoelastic Fluid. AIP Conference Proceedings, 2008, , .	0.4	0

#	Article	IF	CITATIONS
109	Preface to the Special Issue. Combustion Science and Technology, 2014, 186, 1273-1274.	2.3	Ο
110	Preface to the Special Issue. Combustion Science and Technology, 2016, 188, 1691-1692.	2.3	0
111	Preface to the 26th ICDERS Special Issue. Combustion Science and Technology, 2019, 191, 605-606.	2.3	Ο