Randall Q Snurr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8582075/publications.pdf

Version: 2024-02-01

2215 2033 45,244 336 99 205 citations g-index h-index papers 354 354 354 24861 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Realizing the data-driven, computational discovery of metal-organic framework catalysts. Current Opinion in Chemical Engineering, 2022, 35, 100760.	7.8	28
2	Applying design principles to improve hydrogen storage capacity in nanoporous materials. Brazilian Journal of Chemical Engineering, 2022, 39, 919-931.	1.3	3
3	Gating effect for gas adsorption in microporous materialsâ€"mechanisms and applications. Chemical Society Reviews, 2022, 51, 1139-1166.	38.1	34
4	In silico design of microporous polymers for chemical separations and storage. Current Opinion in Chemical Engineering, 2022, 36, 100795.	7.8	6
5	Exploring mechanistic routes for light alkane oxidation with an iron–triazolate metal–organic framework. Physical Chemistry Chemical Physics, 2022, 24, 8129-8141.	2.8	6
6	Creating Optimal Pockets in a Clathrochelate-Based Metal–Organic Framework for Gas Adsorption and Separation: Experimental and Computational Studies. Journal of the American Chemical Society, 2022, 144, 3737-3745.	13.7	85
7	Electrical Regulation of CO ₂ Adsorption in the Metal–Organic Framework MIL-53. ACS Applied Materials & Samp; Interfaces, 2022, 14, 13904-13913.	8.0	6
8	Insights into Mass Transfer Barriers in Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 4134-4141.	6.7	16
9	High-throughput predictions of metal–organic framework electronic properties: theoretical challenges, graph neural networks, and data exploration. Npj Computational Materials, 2022, 8, .	8.7	43
10	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34,	21.0	82
11	Interfacial Unit-Dependent Catalytic Activity for CO Oxidation over Cerium Oxysulfate Cluster Assemblies. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33515-33524.	8.0	2
12	Separation of Aromatic Hydrocarbons in Porous Materials. Journal of the American Chemical Society, 2022, 144, 12212-12218.	13.7	47
13	Molecular Simulations of Adsorption and Diffusion in Crystalline Nanoporous Materials., 2021,, 199-319.		2
14	Nanoconfinement and mass transport in metal–organic frameworks. Chemical Society Reviews, 2021, 50, 11530-11558.	38.1	67
15	Inverse design of nanoporous crystalline reticular materials with deep generative models. Nature Machine Intelligence, 2021, 3, 76-86.	16.0	172
16	Fast and Accurate Machine Learning Strategy for Calculating Partial Atomic Charges in Metal–Organic Frameworks. Journal of Chemical Theory and Computation, 2021, 17, 3052-3064.	5.3	53
17	Connecting theory and simulation with experiment for the study of diffusion in nanoporous solids. Adsorption, 2021, 27, 683-760.	3.0	72
18	Ammonia Capture within Zirconium Metal–Organic Frameworks: Reversible and Irreversible Uptake. ACS Applied Materials & Diterfaces, 2021, 13, 20081-20093.	8.0	36

#	Article	IF	CITATIONS
19	Zirconium Metal–Organic Frameworks Integrating Chloride Ions for Ammonia Capture and/or Chemical Separation. ACS Applied Materials & Interfaces, 2021, 13, 22485-22494.	8.0	27
20	Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery. Matter, 2021, 4, 1578-1597.	10.0	170
21	Insights into Catalytic Hydrolysis of Organophosphonates at M–OH Sites of Azolate-Based Metal Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 9893-9900.	13.7	45
22	Selective Photodimerization in a Cyclodextrin Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 9129-9139.	13.7	34
23	Molecular fingerprint and machine learning to accelerate design of <scp>highâ€performance</scp> homochiral metal–organic frameworks. AICHE Journal, 2021, 67, e17352.	3.6	15
24	Machine learning using host/guest energy histograms to predict adsorption in metal–organic frameworks: Application to short alkanes and Xe/Kr mixtures. Journal of Chemical Physics, 2021, 155, 014701.	3.0	24
25	Molecular Siting of C1–C6 <i>n</i> -Alkanes in ZIF-4: A Hybrid Monte Carlo Study. Journal of Physical Chemistry C, 2021, 125, 16256-16267.	3.1	3
26	Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning. Science Advances, 2021, 7, .	10.3	47
27	Art of Architecture: Efficient Transport through Solvent-Filled Metal–Organic Frameworks Regulated by Topology. Chemistry of Materials, 2021, 33, 6832-6840.	6.7	12
28	Transport Diffusion of Linear Alkanes (C ₅ â€"C ₁₆) through Thin Films of ZIF-8 as Assessed by Quartz Crystal Microgravimetry. Langmuir, 2021, 37, 9405-9414.	3.5	9
29	Computational Screening of Metal-Catecholate-Functionalized Metal–Organic Frameworks for Room-Temperature Hydrogen Storage. Journal of Physical Chemistry C, 2021, 125, 21701-21708.	3.1	9
30	Fine-Tuning a Robust Metal–Organic Framework toward Enhanced Clean Energy Gas Storage. Journal of the American Chemical Society, 2021, 143, 18838-18843.	13.7	79
31	Computational Predictions and Experimental Validation of Alkane Oxidative Dehydrogenation by Fe ₂ M MOF Nodes. ACS Catalysis, 2020, 10, 1460-1469.	11.2	53
32	Insights into Catalytic Gas-Phase Hydrolysis of Organophosphate Chemical Warfare Agents by MOF-Supported Bimetallic Metal-Oxo Clusters. ACS Applied Materials & (2020, 12, 14631-14640).	8.0	18
33	Computational Screening of Metal–Organic Framework-Supported Single-Atom Transition-Metal Catalysts for the Gas-Phase Hydrolysis of Nerve Agents. ACS Catalysis, 2020, 10, 1310-1323.	11.2	39
34	Exploring the Effects of Node Topology, Connectivity, and Metal Identity on the Binding of Nerve Agents and Their Hydrolysis Products in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 35657-35675.	8.0	17
35	Topology-Dependent Alkane Diffusion in Zirconium Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 56049-56059.	8.0	18
36	Zr ₆ O ₈ Node-Catalyzed Butene Hydrogenation and Isomerization in the Metalâ€"Organic Framework NU-1000. ACS Catalysis, 2020, 10, 14959-14970.	11.2	24

#	Article	IF	CITATIONS
37	Do Internal and External Surfaces of Metal–Organic Frameworks Have the Same Hydrophobicity? Insights from Molecular Simulations. Langmuir, 2020, 36, 13070-13078.	3.5	9
38	Investigating the Process and Mechanism of Molecular Transport within a Representative Solvent-Filled Metal–Organic Framework. Langmuir, 2020, 36, 10853-10859.	3.5	18
39	Supramolecular Porous Assemblies of Atomically Precise Catalytically Active Cerium-Based Clusters. Chemistry of Materials, 2020, 32, 8522-8529.	6.7	23
40	Tuning the Atrazine Binding Sites in an Indium-Based Flexible Metal–Organic Framework. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44762-44768.	8.0	11
41	Exploring the Tunability of Trimetallic MOF Nodes for Partial Oxidation of Methane to Methanol. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28217-28231.	8.0	46
42	Topological effects on separation of alkane isomers in metalâ^'organic frameworks. Fluid Phase Equilibria, 2020, 519, 112642.	2.5	8
43	Comparing GGA, GGA+ <i>U</i> , and meta-GGA functionals for redox-dependent binding at open metal sites in metal–organic frameworks. Journal of Chemical Physics, 2020, 152, 224101.	3.0	16
44	Structure and activity of mixed VOx-CeO2 domains supported on alumina in cyclohexane oxidative dehydrogenation. Journal of Catalysis, 2020, 384, 147-158.	6.2	17
45	Highâ€Valent Metal–Oxo Species at the Nodes of Metal–Triazolate Frameworks: The Effects of Ligand Exchange and Twoâ€State Reactivity for Câ"H Bond Activation. Angewandte Chemie - International Edition, 2020, 59, 19494-19502.	13.8	14
46	Highâ€Valent Metal–Oxo Species at the Nodes of Metal–Triazolate Frameworks: The Effects of Ligand Exchange and Twoâ€State Reactivity for Câ~'H Bond Activation. Angewandte Chemie, 2020, 132, 19662-19670.	2.0	9
47	Process-level modelling and optimization to evaluate metal–organic frameworks for post-combustion capture of CO ₂ . Molecular Systems Design and Engineering, 2020, 5, 1205-1218.	3.4	37
48	Isothermal Titration Calorimetry to Explore the Parameter Space of Organophosphorus Agrochemical Adsorption in MOFs. Journal of the American Chemical Society, 2020, 142, 12357-12366.	13.7	53
49	Tuning the Redox Activity of Metal–Organic Frameworks for Enhanced, Selective O ₂ Binding: Design Rules and Ambient Temperature O ₂ Chemisorption in a Cobalt–Triazolate Framework. Journal of the American Chemical Society, 2020, 142, 4317-4328.	13.7	67
50	Ultrastable Mesoporous Hydrogen-Bonded Organic Framework-Based Fiber Composites toward Mustard Gas Detoxification. Cell Reports Physical Science, 2020, 1, 100024.	5.6	107
51	Understanding the Loading Dependence of Adsorbate Diffusivities in Hierarchical Metal–Organic Frameworks. Langmuir, 2020, 36, 1372-1378.	3. 5	18
52	Single-Crystal Polycationic Polymers Obtained by Single-Crystal-to-Single-Crystal Photopolymerization. Journal of the American Chemical Society, 2020, 142, 6180-6187.	13.7	50
53	DFT Study on the Catalytic Activity of ALD-Grown Diiron Oxide Nanoclusters for Partial Oxidation of Methane to Methanol. Journal of Physical Chemistry A, 2020, 124, 1580-1592.	2.5	7
54	Interplay of Lewis and BrÃ,nsted Acid Sites in Zr-Based Metal–Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32090-32096.	8.0	44

#	Article	IF	CITATIONS
55	A Hierarchical Nanoporous Diamondoid Superstructure. CheM, 2019, 5, 2353-2364.	11.7	23
56	lt's an Interesting MOF, but Is It Stable?. Matter, 2019, 1, 26-27.	10.0	4
57	Computational screening, synthesis and testing of metal–organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates. Molecular Systems Design and Engineering, 2019, 4, 1000-1013.	3.4	24
58	High Propane and Isobutane Adsorption Cooling Capacities in Zirconium-Based Metal–Organic Frameworks Predicted by Molecular Simulations. ACS Sustainable Chemistry and Engineering, 2019, 7, 18242-18246.	6.7	14
59	Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019. Journal of Chemical & Engineering Data, 2019, 64, 5985-5998.	1.9	372
60	Prediction of hydrogen adsorption in nanoporous materials from the energy distribution of adsorption sites. Molecular Physics, 2019, 117, 3683-3694.	1.7	23
61	Impact of H2O and CO2 on methane storage in metal–organic frameworks. Adsorption, 2019, 25, 1633-1642.	3.0	8
62	Identification Schemes for Metal–Organic Frameworks To Enable Rapid Search and Cheminformatics Analysis. Crystal Growth and Design, 2019, 19, 6682-6697.	3.0	123
63	<i>110th Anniversary</i> : Surrogate Models Based on Artificial Neural Networks To Simulate and Optimize Pressure Swing Adsorption Cycles for CO ₂ Capture. Industrial & Discrete amp; Engineering Chemistry Research, 2019, 58, 18241-18252.	3.7	61
64	Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks. Molecular Systems Design and Engineering, 2019, 4, 162-174.	3. 4	179
65	Zirconium-Based Metal–Organic Frameworks for the Removal of Protein-Bound Uremic Toxin from Human Serum Albumin. Journal of the American Chemical Society, 2019, 141, 2568-2576.	13.7	105
66	Elucidating the mechanism of the UiO-66-catalyzed sulfide oxidation: activity and selectivity enhancements through changes in the node coordination environment and solvent. Catalysis Science and Technology, 2019, 9, 327-335.	4.1	40
67	Development of a General Evaluation Metric for Rapid Screening of Adsorbent Materials for Postcombustion CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2019, 7, 11529-11539.	6.7	74
68	Investigation of the Hydrophobic Nature of Metal Oxide Surfaces Created by Atomic Layer Deposition. Langmuir, 2019, 35, 5762-5769.	3.5	31
69	Structure–Activity Relationships That Identify Metal–Organic Framework Catalysts for Methane Activation. ACS Catalysis, 2019, 9, 3576-3587.	11.2	105
70	Molecular modelling and machine learning for high-throughput screening of metal-organic frameworks for hydrogen storage. Molecular Simulation, 2019, 45, 1069-1081.	2.0	62
71	The effect of co-adsorbed solvent molecules on H ₂ binding to metal alkoxides. Physical Chemistry Chemical Physics, 2019, 21, 9218-9224.	2.8	2
72	Screening for Improved Nerve Agent Simulants and Insights into Organophosphate Hydrolysis Reactions from DFT and QSAR Modeling. Chemistry - A European Journal, 2019, 25, 9217-9229.	3.3	26

#	Article	IF	Citations
73	Toward Design Rules of Metal–Organic Frameworks for Adsorption Cooling: Effect of Topology on the Ethanol Working Capacity. Chemistry of Materials, 2019, 31, 2702-2706.	6.7	27
74	Interactions of VOx Species with Amorphous TiO2 Domains on ALD-Derived Alumina-Supported Materials. Journal of Physical Chemistry C, 2019, 123, 7988-7999.	3.1	11
75	Identifying promising metal–organic frameworks for heterogeneous catalysis via highâ€throughput periodic density functional theory. Journal of Computational Chemistry, 2019, 40, 1305-1318.	3.3	87
76	Catalytic descriptors and electronic properties of single-site catalysts for ethene dimerization to 1-butene. Catalysis Today, 2018, 312, 149-157.	4.4	16
77	Tunable Crystallinity and Charge Transfer in Twoâ€Dimensional Gâ€Quadruplex Organic Frameworks. Angewandte Chemie, 2018, 130, 4049-4053.	2.0	10
78	Theoretical insights into direct methane to methanol conversion over supported dicopper oxo nanoclusters. Catalysis Today, 2018, 312, 2-9.	4.4	23
79	Computer-aided discovery of a metal–organic framework with superior oxygen uptake. Nature Communications, 2018, 9, 1378.	12.8	136
80	Tunable Crystallinity and Charge Transfer in Twoâ€Dimensional Gâ€Quadruplex Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 3985-3989.	13.8	26
81	Molecular Building Block-Based Electronic Charges for High-Throughput Screening of Metal–Organic Frameworks for Adsorption Applications. Journal of Chemical Theory and Computation, 2018, 14, 365-376.	5.3	18
82	Competitive Adsorption of Methyl Bromide and Water on Metal Catecholates: Insights from Density Functional Theory. Industrial & Engineering Chemistry Research, 2018, 57, 17488-17495.	3.7	5
83	Evidence for Copper Dimers in Low-Loaded CuO _{<i>x</i>} /SiO ₂ Catalysts for Cyclohexane Oxidative Dehydrogenation. ACS Catalysis, 2018, 8, 9775-9789.	11.2	11
84	Molecular Modeling of Carbon Dioxide Adsorption in Metal-Organic Frameworks., 2018,, 99-149.		6
85	Insights into Catalytic Hydrolysis of Organophosphate Warfare Agents by Metal–Organic Framework NU-1000. Journal of Physical Chemistry C, 2018, 122, 12362-12368.	3.1	55
86	Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks. Molecules, 2018, 23, 668.	3.8	15
87	Proton Conduction in Tröger's Base-Linked Poly(crown ether)s. ACS Applied Materials & mp; Interfaces, 2018, 10, 25303-25310.	8.0	27
88	Comprehensive Phase Diagrams of MoS ₂ Edge Sites Using Dispersion-Corrected DFT Free Energy Calculations. Journal of Physical Chemistry C, 2018, 122, 15318-15329.	3.1	18
89	Impact of the strength and spatial distribution of adsorption sites on methane deliverable capacity in nanoporous materials. Chemical Engineering Science, 2017, 159, 18-30.	3.8	26
90	Adsorption and molecular siting of CO ₂ , water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation. Chemical Science, 2017, 8, 3989-4000.	7.4	60

#	Article	IF	Citations
91	Optimizing Open Iron Sites in Metal–Organic Frameworks for Ethane Oxidation: A First-Principles Study. ACS Applied Materials & Study. ACS Applied Materi	8.0	44
92	Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chemical Society Reviews, 2017, 46, 3357-3385.	38.1	707
93	Catechol-Ligated Transition Metals: A Quantum Chemical Study on a Promising System for Gas Separation. Journal of Physical Chemistry C, 2017, 121, 10463-10469.	3.1	20
94	Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33419-33428.	8.0	104
95	G-quadruplex organic frameworks. Nature Chemistry, 2017, 9, 466-472.	13.6	99
96	Correction to "Catechol-Ligated Transition Metals: A Quantum Chemical Study on a Promising System for Gas Separationâ€, Journal of Physical Chemistry C, 2017, 121, 20553-20553.	3.1	1
97	Computational Study of Water Adsorption in the Hydrophobic Metal–Organic Framework ZIF-8: Adsorption Mechanism and Acceleration of the Simulations. Journal of Physical Chemistry C, 2017, 121, 24000-24010.	3.1	62
98	Elucidating the Nanoparticle–Metal Organic Framework Interface of Pt@ZIF-8 Catalysts. Journal of Physical Chemistry C, 2017, 121, 25079-25091.	3.1	28
99	Topologically Guided, Automated Construction of Metal–Organic Frameworks and Their Evaluation for Energy-Related Applications. Crystal Growth and Design, 2017, 17, 5801-5810.	3.0	176
100	High-Throughput Computational Screening of Multivariate Metal–Organic Frameworks (MTV-MOFs) for CO ₂ Capture. Journal of Physical Chemistry Letters, 2017, 8, 6135-6141.	4.6	82
101	<i>Ab Initio</i> Screening of Metal Catecholates for Adsorption of Toxic Pnictogen Hydride Gases. Industrial & Description Office Hydrogen Hydride Gases. Industrial & Description Office Hydrogen Hydride Gases. Industrial & Description Office Hydrogen Hyd	3.7	8
102	Computational screening of functional groups for capture of toxic industrial chemicals in porous materials. Physical Chemistry Chemical Physics, 2017, 19, 31766-31772.	2.8	1
103	Computational Screening of Nanoporous Materials for Hexane and Heptane Isomer Separation. Chemistry of Materials, 2017, 29, 6315-6328.	6.7	65
104	Large-Scale Refinement of Metalâ^'Organic Framework Structures Using Density Functional Theory. Chemistry of Materials, 2017, 29, 2521-2528.	6.7	103
105	Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy and Environmental Science, 2016, 9, 3279-3289.	30.8	231
106	Alkaline-earth metal-oxide overlayers on TiO ₂ : application toward CO ₂ photoreduction. Catalysis Science and Technology, 2016, 6, 7885-7895.	4.1	29
107	Nanosizing a Metal–Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis. ACS Nano, 2016, 10, 9174-9182.	14.6	202
108	High-Throughput Screening of Metal–Organic Frameworks for CO ₂ Capture in the Presence of Water. Langmuir, 2016, 32, 10368-10376.	3.5	124

#	Article	IF	Citations
109	CO ₂ adsorption-induced structural changes in coordination polymer ligands elucidated via molecular simulations and experiments. Dalton Transactions, 2016, 45, 17168-17178.	3.3	11
110	Toward Design Rules for Enzyme Immobilization in Hierarchical Mesoporous Metal-Organic Frameworks. CheM, 2016, 1, 154-169.	11.7	286
111	High-Throughput Screening of Metal–Organic Frameworks for Hydrogen Storage at Cryogenic Temperature. Journal of Physical Chemistry C, 2016, 120, 27328-27341.	3.1	130
112	In silico discovery of metal-organic frameworks for precombustion CO ₂ capture using a genetic algorithm. Science Advances, 2016, 2, e1600909.	10.3	231
113	Using Gas-Phase Clusters to Screen Porphyrin-Supported Nanocluster Catalysts for Ethane Oxidation to Ethanol. Catalysis Letters, 2016, 146, 2566-2573.	2.6	10
114	A Redox-Active Bistable Molecular Switch Mounted inside a Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 14242-14245.	13.7	114
115	Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)zinc(II) MOFs. Journal of the American Chemical Society, 2016, 138, 14449-14457.	13.7	210
116	CD-MOF: A Versatile Separation Medium. Journal of the American Chemical Society, 2016, 138, 2292-2301.	13.7	269
117	Optimization of Two-Stage Pressure/Vacuum Swing Adsorption with Variable Dehydration Level for Postcombustion Carbon Capture. Industrial & Engineering Chemistry Research, 2016, 55, 3338-3350.	3.7	75
118	Efficient identification of hydrophobic MOFs: application in the capture of toxic industrial chemicals. Journal of Materials Chemistry A, 2016, 4, 529-536.	10.3	93
119	Application of Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 215-224.	13.7	201
120	High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27. Dalton Transactions, 2016, 45, 4150-4153.	3.3	102
121	RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation, 2016, 42, 81-101.	2.0	1,266
122	Computer-Aided Search for Materials to Store Natural Gas for Vehicles. Frontiers for Young Minds, 2015, 3, .	0.8	2
123	Understanding the Effects of Preadsorbed Perfluoroalkanes on the Adsorption of Water and Ammonia in MOFs. Journal of Physical Chemistry C, 2015, 119, 3163-3170.	3.1	20
124	The materials genome in action: identifying the performance limits for methane storage. Energy and Environmental Science, 2015, 8, 1190-1199.	30.8	314
125	Evaluation of Force Field Performance for High-Throughput Screening of Gas Uptake in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 3143-3152.	3.1	85
126	Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. Journal of the American Chemical Society, 2015, 137, 3585-3591.	13.7	329

#	Article	IF	CITATIONS
127	Destruction of chemical warfare agents using metal–organic frameworks. Nature Materials, 2015, 14, 512-516.	27.5	790
128	A MOF platform for incorporation of complementary organic motifs for CO ₂ binding. Chemical Communications, 2015, 51, 12478-12481.	4.1	45
129	Hierarchically porous organic polymers: highly enhanced gas uptake and transport through templated synthesis. Chemical Science, 2015, 6, 384-389.	7.4	68
130	Continuous fractional component Monte Carlo simulations of high-density adsorption in metal–organic frameworks. Molecular Simulation, 2015, 41, 1339-1347.	2.0	6
131	Pore Size Dependence of Adsorption and Separation of Thiophene/Benzene Mixtures in Zeolites. Journal of Physical Chemistry C, 2015, 119, 15263-15273.	3.1	39
132	Water stabilization of Zr ₆ -based metal–organic frameworks via solvent-assisted ligand incorporation. Chemical Science, 2015, 6, 5172-5176.	7.4	102
133	A kinetic study of vapor-phase cyclohexene epoxidation by H2O2 over mesoporous TS-1. Journal of Catalysis, 2015, 326, 107-115.	6.2	51
134	Carbohydrate-Mediated Purification of Petrochemicals. Journal of the American Chemical Society, 2015, 137, 5706-5719.	13.7	112
135	Computational Screening of Metal Catecholates for Ammonia Capture in Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2015, 54, 3257-3267.	3.7	27
136	A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal–organic frameworks. Energy and Environmental Science, 2015, 8, 1501-1510.	30.8	84
137	A modelling approach for MOF-encapsulated metal catalysts and application to n-butane oxidation. Physical Chemistry Chemical Physics, 2015, 17, 27596-27608.	2.8	19
138	Optimization of Pressure/Vacuum Swing Adsorption with Variable Dehydration Levels for Post Combustion Carbon Capture. Computer Aided Chemical Engineering, 2015, 37, 2447-2452.	0.5	0
139	Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11161-11168.	7.1	83
140	Heterogeneous Diffusion of Alkanes in the Hierarchical Metal–Organic Framework NU-1000. Langmuir, 2015, 31, 10056-10065.	3.5	32
141	Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology. Journal of the American Chemical Society, 2015, 137, 13183-13190.	13.7	149
142	Diffusion of methane and other alkanes in metal-organic frameworks for natural gas storage. Chemical Engineering Science, 2015, 124, 135-143.	3.8	34
143	Advanced Monte Carlo simulations of the adsorption of chiral alcohols in a homochiral metalâ€organic framework. AICHE Journal, 2014, 60, 2324-2334.	3.6	14
144	The effect of pyridine modification of Ni–DOBDC on CO ₂ capture under humid conditions. Chemical Communications, 2014, 50, 3296-3298.	4.1	52

#	Article	IF	Citations
145	High-throughput computational screening of metal–organic frameworks. Chemical Society Reviews, 2014, 43, 5735-5749.	38.1	336
146	Metallacarborane-Based Metal–Organic Framework with a Complex Topology. Crystal Growth and Design, 2014, 14, 1324-1330.	3.0	28
147	Chiral Co(II) Metal–Organic Framework in the Heterogeneous Catalytic Oxidation of Alkenes under Aerobic and Anaerobic Conditions. ACS Catalysis, 2014, 4, 1032-1039.	11.2	53
148	Textural properties of a large collection of computationally constructed MOFs and zeolites. Microporous and Mesoporous Materials, 2014, 186, 207-213.	4.4	38
149	Screening of bio-compatible metal–organic frameworks as potential drug carriers using Monte Carlo simulations. Journal of Materials Chemistry B, 2014, 2, 766-774.	5.8	215
150	High propylene/propane adsorption selectivity in a copper(catecholate)-decorated porous organic polymer. Journal of Materials Chemistry A, 2014, 2, 299-302.	10.3	46
151	Modeling Water and Ammonia Adsorption in Hydrophobic Metal–Organic Frameworks: Single Components and Mixtures. Journal of Physical Chemistry C, 2014, 118, 1102-1110.	3.1	57
152	Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals. Chemistry of Materials, 2014, 26, 6185-6192.	6.7	524
153	Computational Design of Metal–Organic Frameworks Based on Stable Zirconium Building Units for Storage and Delivery of Methane. Chemistry of Materials, 2014, 26, 5632-5639.	6.7	191
154	Waterâ€Stable Zirconiumâ€Based Metal–Organic Framework Material with Highâ€Surface Area and Gasâ€Storage Capacities. Chemistry - A European Journal, 2014, 20, 12389-12393.	3.3	150
155	Isoreticular Series of (3,24)-Connected Metal–Organic Frameworks: Facile Synthesis and High Methane Uptake Properties. Chemistry of Materials, 2014, 26, 1912-1917.	6.7	76
156	Water adsorption in UiO-66: the importance of defects. Chemical Communications, 2014, 50, 11329-11331.	4.1	227
157	Exploring the Limits of Methane Storage and Delivery in Nanoporous Materials. Journal of Physical Chemistry C, 2014, 118, 6941-6951.	3.1	108
158	A computational study of the adsorption of n-perfluorohexane in zeolite BCR-704. Fluid Phase Equilibria, 2014, 366, 146-151.	2.5	14
159	Strong influence of the H2 binding energy on the Maxwell–Stefan diffusivity in NU-100, UiO-68, and IRMOF-16. Microporous and Mesoporous Materials, 2014, 185, 190-196.	4.4	8
160	High-Throughput Screening of Porous Crystalline Materials for Hydrogen Storage Capacity near Room Temperature. Journal of Physical Chemistry C, 2014, 118, 5383-5389.	3.1	84
161	Computational Study of Propylene and Propane Binding in Metal–Organic Frameworks Containing Highly Exposed Cu ⁺ or Ag ⁺ Cations. Journal of Physical Chemistry C, 2014, 118, 9086-9092.	3.1	21
162	Insights into the complexity of chiral recognition by a three-point model. Microporous and Mesoporous Materials, 2013, 172, 44-50.	4.4	22

#	Article	IF	Citations
163	A combined experimental and quantum chemical study of CO2 adsorption in the metal–organic framework CPO-27 with different metals. Chemical Science, 2013, 4, 3544.	7.4	172
164	Carborane-Based Metal–Organic Framework with High Methane and Hydrogen Storage Capacities. Chemistry of Materials, 2013, 25, 3539-3543.	6.7	115
165	Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO ₂ Adsorption Studies. Journal of the American Chemical Society, 2013, 135, 16801-16804.	13.7	473
166	High xenon/krypton selectivity in a metal-organic framework with small pores and strong adsorption sites. Microporous and Mesoporous Materials, 2013, 169, 176-179.	4.4	101
167	Experiences with the publicly available multipurpose simulation code, Music. Molecular Simulation, 2013, 39, 1223-1232.	2.0	33
168	A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications, 2013, 49, 9449.	4.1	1,340
169	Light-Harvesting and Ultrafast Energy Migration in Porphyrin-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 862-869.	13.7	510
170	Computational Screening of Functional Groups for Ammonia Capture in Metal–Organic Frameworks. Langmuir, 2013, 29, 1446-1456.	3.5	49
171	Effect of metal alkoxide functionalization on hydrogen mobility in metal–organic frameworks. Chemical Physics Letters, 2013, 577, 76-81.	2.6	9
172	Design strategies for metal alkoxide functionalized metal–organic frameworks for ambient temperature hydrogen storage. Microporous and Mesoporous Materials, 2013, 171, 103-109.	4.4	21
173	Control over Catenation in Pillared Paddlewheel Metal–Organic Framework Materials via Solvent-Assisted Linker Exchange. Chemistry of Materials, 2013, 25, 739-744.	6.7	135
174	Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases. Energy and Environmental Science, 2013, 6, 1158.	30.8	219
175	Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal–organic framework NU-111. Chemical Communications, 2013, 49, 2992.	4.1	137
176	Large-Scale Quantitative Structure–Property Relationship (QSPR) Analysis of Methane Storage in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2013, 117, 7681-7689.	3.1	174
177	Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 10294-10297.	13.7	821
178	A zwitterionic metal–organic framework with free carboxylic acid sites that exhibits enhanced hydrogen adsorption energies. CrystEngComm, 2013, 15, 9408.	2.6	19
179	Noble Gas Adsorption in Copper Trimesate, HKUST-1: An Experimental and Computational Study. Journal of Physical Chemistry C, 2013, 117, 20116-20126.	3.1	92
180	Large-Scale Generation and Screening of Hypothetical Metal-Organic Frameworks for Applications in Gas Storage and Separations. Topics in Current Chemistry, 2013, 345, 257-289.	4.0	8

#	Article	IF	CITATIONS
181	Structure–property relationships of porous materials for carbon dioxide separation and capture. Energy and Environmental Science, 2012, 5, 9849.	30.8	334
182	Prediction of Structure and Properties of Boron-Based Covalent Organic Frameworks by a First-Principles Derived Force Field. Journal of Physical Chemistry C, 2012, 116, 4921-4929.	3.1	52
183	Polyporous Metal-Coordination Frameworks. Organic Letters, 2012, 14, 1460-1463.	4.6	47
184	Hierarchical modeling of ammonia adsorption in functionalized metal–organic frameworks. Dalton Transactions, 2012, 41, 3962.	3.3	41
185	Enhanced catalytic decomposition of a phosphate triester by modularly accessible bimetallic porphyrin dyads and dimers. Chemical Communications, 2012, 48, 4178.	4.1	39
186	An Extended Charge Equilibration Method. Journal of Physical Chemistry Letters, 2012, 3, 2506-2511.	4.6	253
187	Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?. Journal of the American Chemical Society, 2012, 134, 15016-15021.	13.7	1,497
188	Understanding excess uptake maxima for hydrogen adsorption isotherms in frameworks with rht topology. Chemical Communications, 2012, 48, 10496.	4.1	50
189	Incorporation of an A1/A2-Difunctionalized Pillar[5]arene into a Metal–Organic Framework. Journal of the American Chemical Society, 2012, 134, 17436-17439.	13.7	254
190	Highly Selective Carbon Dioxide Uptake by [Cu(bpy- <i>n</i>) ₂ (SiF ₆)] (bpy-1 =) Tj ETQ 3663-3666.	q0 0 0 rgB 13.7	T /Overlock 1 303
191	Designing Higher Surface Area Metal–Organic Frameworks: Are Triple Bonds Better Than Phenyls?. Journal of the American Chemical Society, 2012, 134, 9860-9863.	13.7	198
192	Stepwise adsorption in a mesoporous metal–organic framework: experimental and computational analysis. Chemical Communications, 2012, 48, 3297.	4.1	60
193	Self-Diffusion of Chain Molecules in the Metal–Organic Framework IRMOF-1: Simulation and Experiment. Journal of Physical Chemistry Letters, 2012, 3, 930-933.	4.6	59
194	Rate-Determining Step in the NO _{<i>x</i>} Reduction Mechanism on BaY Zeolites and the Importance of Long-Range Lattice Effects. ACS Catalysis, 2012, 2, 350-359.	11.2	6
195	Nanoporous Carbohydrate Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 406-417.	13.7	271
196	Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 703-723.	47.7	1,085
197	Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworks. Chemical Science, 2012, 3, 2217.	7.4	248
198	Screening CO ₂ /N ₂ selectivity in metalâ€organic frameworks using Monte Carlo simulations and ideal adsorbed solution theory. Canadian Journal of Chemical Engineering, 2012, 90, 825-832.	1.7	46

#	Article	IF	Citations
199	Large-scale screening of hypothetical metal–organic frameworks. Nature Chemistry, 2012, 4, 83-89.	13.6	1,098
200	DFT investigation of hydroperoxide decomposition over copper and cobalt sites within metal-organic frameworks. Journal of Catalysis, 2012, 286, 95-102.	6.2	26
201	Computational screening of homochiral metal–organic frameworks for enantioselective adsorption. Microporous and Mesoporous Materials, 2012, 157, 118-123.	4.4	32
202	High Propene/Propane Selectivity in Isostructural Metal–Organic Frameworks with High Densities of Open Metal Sites. Angewandte Chemie - International Edition, 2012, 51, 1857-1860.	13.8	392
203	New Horizons for the Physical Chemistry of Nanoporous Materials. Journal of Physical Chemistry Letters, 2011, 2, 1842-1843.	4.6	6
204	Parallel Tempering Simulations of Liquid-Phase Adsorption of <i>n</i> -Alkane Mixtures in Zeolite LTA-5A. Journal of Physical Chemistry C, 2011, 115, 762-769.	3.1	18
205	Kinetic Separation of Propene and Propane in Metalâ^'Organic Frameworks: Controlling Diffusion Rates in Plate-Shaped Crystals via Tuning of Pore Apertures and Crystallite Aspect Ratios. Journal of the American Chemical Society, 2011, 133, 5228-5231.	13.7	263
206	Metal Alkoxide Functionalization in Metalâ^'Organic Frameworks for Enhanced Ambient-Temperature Hydrogen Storage. Journal of Physical Chemistry C, 2011, 115, 2066-2075.	3.1	111
207	Computational screening of metal-organic frameworks for xenon/krypton separation. AICHE Journal, 2011, 57, 1759-1766.	3.6	147
208	Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture. Angewandte Chemie - International Edition, 2011, 50, 11586-11596.	13.8	1,025
209	Towards rapid computational screening of metal-organic frameworks for carbon dioxide capture: Calculation of framework charges via charge equilibration. Chemical Engineering Journal, 2011, 171, 775-781.	12.7	141
210	Enhancement of CO2/CH4 selectivity in metal-organic frameworks containing lithium cations. Microporous and Mesoporous Materials, 2011, 141, 231-235.	4.4	128
211	Elucidating steric effects on enantioselective epoxidation catalyzed by (salen)Mn in metal-organic frameworks. Journal of Molecular Catalysis A, 2011, 334, 89-97.	4.8	40
212	Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal–organic frameworks. Microporous and Mesoporous Materials, 2010, 132, 300-303.	4.4	130
213	Molecular simulations of very high pressure hydrogen storage using metal–organic frameworks. Microporous and Mesoporous Materials, 2010, 135, 178-186.	4.4	21
214	Effect of framework distortion on xylene adsorption in AlPO4-11 predicted from Monte Carlo simulations. Microporous and Mesoporous Materials, 2010, 127, 157-160.	4.4	2
215	De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2010, 2, 944-948.	13.6	1,535
216	Distance and angular holonomic constraints in molecular simulations. Journal of Chemical Physics, 2010, 133, 034114.	3.0	16

#	Article	IF	Citations
217	Evaluation of the BET Method for Determining Surface Areas of MOFs and Zeolites that Contain Ultra-Micropores. Langmuir, 2010, 26, 5475-5483.	3.5	257
218	Ultrahigh Porosity in Metal-Organic Frameworks. Science, 2010, 329, 424-428.	12.6	3,306
219	Self-Diffusion Studies in CuBTC by PFG NMR and MD Simulations. Journal of Physical Chemistry C, 2010, 114, 10527-10534.	3.1	82
220	Hybrid Quantum Mechanics/Molecular Mechanics Investigation of (salen)Mn for use in Metalâ^'Organic Frameworks. Industrial & Engineering Chemistry Research, 2010, 49, 10965-10973.	3.7	32
221	Elucidation of consistent enantioselectivity for a homologous series of chiral compounds in homochiral metal–organic frameworks. Physical Chemistry Chemical Physics, 2010, 12, 6466.	2.8	27
222	Chemical reduction of a diimide based porous polymer for selective uptake of carbon dioxide versus methane. Chemical Communications, 2010, 46, 1056.	4.1	144
223	Separation of gas mixtures using Co(ii) carborane-based porous coordination polymers. Chemical Communications, 2010, 46, 3478.	4.1	135
224	DFT Study of deNO $<$ sub $><$ i $>xi></sub> Reactions in the Gas Phase: Mimicking the Reaction Mechanism over BaNaY Zeolites. Journal of Physical Chemistry A, 2009, 113, 6730-6739.$	2.5	3
225	Microkinetic analysis of the epoxidation of styrene catalyzed by (porphyrin)Mn encapsulated in molecular squares. Journal of Catalysis, 2009, 266, 145-155.	6.2	12
226	Investigation of particle damping mechanism via particle dynamics simulations. Granular Matter, 2009, 11, 417-429.	2.2	50
227	Putting the squeeze on hydrogen. Nature Chemistry, 2009, 1, 426-427.	13.6	5
228	Modified temperature programmed desorption evaluation of hydrocarbon trapping by CsMOR zeolite under cold start conditions. Microporous and Mesoporous Materials, 2009, 125, 35-38.	4.4	21
229	Diffusion in micropores. Microporous and Mesoporous Materials, 2009, 125, 1-2.	4.4	0
230	Particle dynamics simulations of a piston-based particle damper. Powder Technology, 2009, 189, 115-125.	4.2	50
231	Mechanical damping using adhesive micro or nano powders. Powder Technology, 2009, 191, 143-148.	4.2	7
232	Construction and characterization of a particle-based thrust damping system. Journal of Sound and Vibration, 2009, 326, 489-502.	3.9	22
233	Strategies for Characterization of Large-Pore Metal-Organic Frameworks by Combined Experimental and Computational Methods. Chemistry of Materials, 2009, 21, 4768-4777.	6.7	68
234	Collective Effects of Multiple Chiral Selectors on Enantioselective Adsorption. Langmuir, 2009, 25, 10730-10736.	3.5	21

#	Article	IF	Citations
235	Method for Analyzing Structural Changes of Flexible Metalâ 'Organic Frameworks Induced by Adsorbates. Journal of Physical Chemistry C, 2009, 113, 19317-19327.	3.1	71
236	Screening of Metalâ^'Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach. Journal of the American Chemical Society, 2009, 131, 18198-18199.	13.7	816
237	Enhanced CO ₂ Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules. Chemistry of Materials, 2009, 21, 1425-1430.	6.7	523
238	Using molecular simulation to characterise metal–organic frameworks for adsorption applications. Chemical Society Reviews, 2009, 38, 1237.	38.1	613
239	Synthesis, Properties, and Gas Separation Studies of a Robust Diimide-Based Microporous Organic Polymer. Chemistry of Materials, 2009, 21, 3033-3035.	6.7	272
240	QM/MM Study of the Effect of Local Environment on Dissociative Adsorption in Bay Zeolites. Journal of Physical Chemistry C, 2009, 113, 15643-15651.	3.1	17
241	Heats of Adsorption for Seven Gases in Three Metalâ^'Organic Frameworks: Systematic Comparison of Experiment and Simulation. Langmuir, 2009, 25, 7383-7388.	3.5	212
242	Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification. Journal of Materials Chemistry, 2009, 19, 2131.	6.7	370
243	A new perspective on the order- <i>n</i> algorithm for computing correlation functions. Molecular Simulation, 2009, 35, 1084-1097.	2.0	82
244	A computational study of enantioselective adsorption in a homochiral metal–organic framework. Molecular Simulation, 2009, 35, 50-59.	2.0	35
245	Self-Diffusion Studies of Binary Mixtures in NaX Zeolites Using Pulsed Field Gradient NMR and a Maxwellâ^'Stefan Model. Journal of Physical Chemistry A, 2009, 113, 3904-3910.	2.5	7
246	A DFT study of adsorption of intermediates in the NOx reduction pathway over BaNaY zeolites. Catalysis Today, 2008, 136, 64-75.	4.4	25
247	Studies on adsorption equilibrium of xylenes in AEL framework using biased GCMC and energy minimization. Microporous and Mesoporous Materials, 2008, 111, 89-96.	4.4	18
248	Quantum chemical determination of stable intermediates for alkene epoxidation with Mn-porphyrin catalysts. Journal of Molecular Catalysis A, 2008, 285, 120-127.	4.8	16
249	Carborane-based metal–organic frameworks as highly selective sorbents for CO2 over methane. Chemical Communications, 2008, , 4135.	4.1	349
250	Solvent effects in the epoxidation reaction of 1-hexene with titanium silicalite-1 catalyst. Journal of Catalysis, 2008, 253, 148-158.	6.2	37
251	Enhanced Hydrogen Uptake and the Electronic Structure of Lithium-Doped Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2008, 112, 9278-9284.	3.1	74
252	Separation of CO ₂ from CH ₄ Using Mixed-Ligand Metalâ^'Organic Frameworks. Langmuir, 2008, 24, 8592-8598.	3 . 5	557

#	Article	IF	Citations
253	Understanding Inflections and Steps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks. Journal of the American Chemical Society, 2008, 130, 406-407.	13.7	485
254	Is catenation beneficial for hydrogen storage in metal–organic frameworks?. Chemical Communications, 2008, , 4132.	4.1	80
255	Separation and Molecular-Level Segregation of Complex Alkane Mixtures in Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2008, 130, 10884-10885.	13.7	116
256	Designing Nanostructured Membranes for Oxidative Dehydrogenation of Alkanes Using Kinetic Modeling. Industrial & Engineering Chemistry Research, 2008, 47, 5395-5401.	3.7	0
257	Molecular mechanisms of liquid slip. Journal of Fluid Mechanics, 2008, 600, 257-269.	3.4	96
258	Recent developments in the molecular modeling of diffusion in nanoporous materials. Molecular Simulation, 2007, 33, 305-325.	2.0	166
259	Monte Carlo simulation of n-alkane adsorption isotherms in carbon slit pores. Journal of Chemical Physics, 2007, 126, 134708.	3.0	67
260	Granular mixtures: Analogy with chemical solution thermodynamics. Journal of Chemical Physics, 2007, 127, 174902.	3.0	3
261	Liquid Slip in Nanoscale Channels as a Rate Process. Physical Review Letters, 2007, 98, 226001.	7.8	58
262	Using molecular simulation to characterise metal-organic frameworks and judge their performance as adsorbents. Studies in Surface Science and Catalysis, 2007, , 161-168.	1.5	2
263	Molecular Cage Nestling in the Liquid-Phase Adsorption ofn-Alkanes in 5A Zeolite. Journal of Physical Chemistry C, 2007, 111, 2191-2197.	3.1	35
264	Solution-Phase Structural Characterization of Supramolecular Assemblies by Molecular Diffraction. Journal of the American Chemical Society, 2007, 129, 1578-1585.	13.7	47
265	Applicability of the BET Method for Determining Surface Areas of Microporous Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2007, 129, 8552-8556.	13.7	885
266	Exceptional Negative Thermal Expansion in Isoreticular Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2007, 46, 4496-4499.	13.8	289
267	Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1. Fluid Phase Equilibria, 2007, 261, 152-161.	2.5	129
268	Transmission probabilities and particle–wall contact for Knudsen diffusion in pores of variable diameter. Chemical Engineering Science, 2007, 62, 6843-6850.	3.8	9
269	Design Requirements for Metal-Organic Frameworks as Hydrogen Storage Materials. Journal of Physical Chemistry C, 2007, 111, 18794-18803.	3.1	190
270	Calculating Geometric Surface Areas as a Characterization Tool for Metalâ "Organic Frameworks. Journal of Physical Chemistry C, 2007, 111, 15350-15356.	3.1	498

#	Article	IF	Citations
271	Monte Carlo and energy minimization studies of binary xylene adsorption in AEL and AFI networks. Adsorption, 2007, 13, 477.	3.0	7
272	Molecular Squares, Rectangles, and Corners:Â Ground-State Electronic Structure and Configurational Properties. Chemistry of Materials, 2006, 18, 620-628.	6.7	1
273	Effects of Surface Area, Free Volume, and Heat of Adsorption on Hydrogen Uptake in Metalâ^Organic Frameworks. Journal of Physical Chemistry B, 2006, 110, 9565-9570.	2.6	558
274	ls 1-hexene epoxidation in TS-1 diffusion limited in different solvents?. Catalysis Communications, 2006, 7, 936-940.	3.3	22
275	Water adsorption in hydrophobic nanopores: Monte Carlo simulations of water in silicalite. Microporous and Mesoporous Materials, 2006, 90, 293-298.	4.4	84
276	Molecular Modeling and Experimental Studies of the Thermodynamic and Transport Properties of Pyridinium-Based Ionic Liquids. Journal of Physical Chemistry B, 2006, 110, 2821-2832.	2.6	226
277	Molecular dynamics characterization of thin film viscosity for EHL simulation. Tribology Letters, 2006, 21, 217-225.	2.6	42
278	Analysis of lubrication failure using molecular simulation. Tribology Letters, 2006, 23, 253-260.	2.6	3
279	Guest-specific diffusion anisotropy in nanoporous materials: Molecular dynamics and dynamic Monte Carlo simulations. Adsorption, 2006, 12, 417-422.	3.0	4
280	Multiscale modeling of transport and residence times in nanostructured membranes. AICHE Journal, 2006, 52, 3679-3687.	3.6	45
281	Simulated Adsorption Properties and Synthesis Prospects of Homochiral Porous Solids Based on Their Heterochiral Analogs. Langmuir, 2005, 21, 2267-2272.	3.5	29
282	A Study of Pore Blockage in Silicalite Zeolite Using Free Energy Perturbation Calculations. Journal of Physical Chemistry B, 2005, 109, 1822-1833.	2.6	19
283	Theoretical Modeling of Zeolite Catalysis. , 2005, , 287-306.		1
284	Boundary effects of molecular diffusion in nanoporous materials: A pulsed field gradient nuclear magnetic resonance study. Journal of Chemical Physics, 2004, 120, 367-373.	3.0	44
285	Molecular modeling of binary liquid-phase adsorption of aromatics in silicalite. AICHE Journal, 2004, 50, 463-469.	3.6	59
286	Prospects for nanoporous metal-organic materials in advanced separations processes. AICHE Journal, 2004, 50, 1090-1095.	3.6	249
287	Interaction of divalent metal cations with ferrierite: insights from density functional theory. Microporous and Mesoporous Materials, 2004, 68, 45-53.	4.4	13
288	Molecular modelling of adsorption in novel nanoporous metal–organic materials. Molecular Physics, 2004, 102, 211-221.	1.7	126

#	Article	IF	CITATIONS
289	Structural analysis of porphyrin molecular squares using molecular mechanics and density-functional methods. Journal of Chemical Physics, 2004, 121, 7228-7236.	3.0	13
290	Assessment of Isoreticular Metalâ^'Organic Frameworks for Adsorption Separations:Â A Molecular Simulation Study of Methane/n-Butane Mixtures. Journal of Physical Chemistry B, 2004, 108, 15703-15708.	2.6	165
291	Nonequilibrium Molecular Dynamics Simulations of Diffusion of Binary Mixtures Containing Shortn-Alkanes in Faujasite. Journal of Physical Chemistry B, 2004, 108, 13481-13491.	2.6	108
292	Design of New Materials for Methane Storage. Langmuir, 2004, 20, 2683-2689.	3.5	663
293	Adsorption of Liquid-Phase Alkane Mixtures in Silicalite:Â Simulations and Experiment. Langmuir, 2004, 20, 150-156.	3.5	74
294	Effects of Molecular Siting and Adsorbent Heterogeneity on the Ideality of Adsorption Equilibria. Langmuir, 2004, 20, 2489-2497.	3.5	78
295	Effect of local framework heterogeneity on NO adsorption inÂcobalt–ferrierite. Journal of Catalysis, 2003, 219, 117-125.	6.2	18
296	Vapor permeation studies of membranes made from molecular squares. Journal of Membrane Science, 2003, 221, 103-111.	8.2	7
297	Origin and Characteristics of Preferential Adsorption on Different Sites in Cobalt-Exchanged Ferrierite. Journal of Physical Chemistry B, 2003, 107, 13329-13335.	2.6	7
298	Ab Initio Stochastic Optimization of Conformational and Many-Body Degrees of Freedom. Journal of Chemical Information and Computer Sciences, 2003, 43, 1820-1828.	2.8	1
299	Packing Effects in the Liquid-Phase Adsorption of C5-C22n-Alkanes on ZSM-5. Journal of Physical Chemistry B, 2003, 107, 10760-10766.	2.6	51
300	Object-oriented Programming Paradigms for Molecular Modeling. Molecular Simulation, 2003, 29, 29-46.	2.0	360
301	Two general methods for grand canonical ensemble simulation of molecules with internal flexibility. Journal of Chemical Physics, 2003, 118, 7635.	3.0	36
302	Density Functional Theory Investigation of Cobalt Siting in Ferrierite. Journal of Physical Chemistry B, 2002, 106, 10864-10872.	2.6	17
303	Characterization of Acidic OH Groups in Zeolites of Different Types:Â An Interpretation of NH3-TPD Results in the Light of Confinement Effects. Journal of Physical Chemistry B, 2002, 106, 3882-3889.	2.6	89
304	One-dimensional zeolites as hydrocarbon traps. Microporous and Mesoporous Materials, 2002, 56, 55-64.	4.4	85
305	Siting of Mixtures in Mordenite Zeolites:Â19F and129Xe NMR and Molecular Simulation. Journal of Physical Chemistry B, 2001, 105, 4698-4708.	2.6	23
306	A Fukui function overlap method for predicting reactivity in sterically complex systems. Journal of Chemical Physics, 2001, 114, 2580-2591.	3.0	20

#	Article	IF	CITATIONS
307	Predicting membrane flux of CH4 and CF4 mixtures in Faujasite from molecular simulations. AICHE Journal, 2001, 47, 2032-2041.	3.6	73
308	Molecular Squares as Molecular Sieves: Size-Selective Transport Through Porous-Membrane-Supported Thin-Film Materials. Advanced Materials, 2001, 13, 1895.	21.0	53
309	An explanation for the differences in catalytic hydrocarbon cracking activity between steam and chemically dealuminated Y zeolites. Microporous and Mesoporous Materials, 2000, 35-36, 61-74.	4.4	14
310	Evidence of different reaction mechanisms during the cracking of n-hexane on H-USY zeolite. Applied Catalysis A: General, 2000, 203, 179-190.	4.3	46
311	Applications of molecular modeling in heterogeneous catalysis research. Applied Catalysis A: General, 2000, 200, 23-46.	4.3	103
312	Diffusion of binary mixtures of CF4 and n-alkanes in faujasite. Separation and Purification Technology, 2000, 20, 1-13.	7.9	103
313	Enhanced hydrocarbon cracking activity of Y zeolites. Topics in Catalysis, 2000, 10, 59-64.	2.8	40
314	Molecular Traffic Control in a Nanoscale System. Physical Review Letters, 2000, 84, 2893-2896.	7.8	66
315	Mesoporous Thin Films of "Molecular Squares―as Sensors for Volatile Organic Compounds. Langmuir, 2000, 16, 3964-3970.	3.5	86
316	Grand Canonical Monte Carlo Simulations of Nonrigid Molecules: Â Siting and Segregation in Silicalite Zeolite. Langmuir, 2000, 16, 3910-3919.	3.5	72
317	A consistent correlation approach to single file diffusion with reaction. Journal of Chemical Physics, 1999, 111, 2210-2221.	3.0	25
318	Diffusion mechanisms of normal alkanes in faujasite zeolites. Journal of Chemical Physics, 1999, 111, 1209-1222.	3.0	43
319	The roles of acid strength and pore diffusion in the enhanced cracking activity of steamed Y zeolites. Applied Catalysis A: General, 1999, 177, 161-175.	4.3	144
320	Towards understanding the enhanced cracking activity of steamed Y zeolites. Catalysis Today, 1999, 52, 91-98.	4.4	27
321	Monomolecular cracking of n-hexane on Y, MOR, and ZSM-5 zeolites. Applied Catalysis A: General, 1999, 179, 71-86.	4.3	219
322	Adsorption isotherm sensitivity to small changes in zeolite structure. Chemical Physics Letters, 1999, 308, 155-159.	2.6	59
323	Hierarchical approach for simulation of binary adsorption in silicalite. AICHE Journal, 1999, 45, 2223-2236.	3.6	13
324	Siting and Segregation Effects of Simple Molecules in Zeolites MFI, MOR, and BOG. Journal of Physical Chemistry B, 1998, 102, 6720-6731.	2.6	65

#	ARTICLE	lF	CITATIONS
325	Simulation of hydrocarbon diffusion in zeolites. Studies in Surface Science and Catalysis, 1997, 105, 1851-1858.	1.5	5
326	Molecular Simulations and NMR Measurements of Binary Diffusion in Zeolites. Journal of Physical Chemistry B, 1997, 101, 6469-6473.	2.6	154
327	Adsorption of CH4â^'CF4 Mixtures in Silicalite:  Simulation, Experiment, and Theory. Langmuir, 1997, 13, 6795-6804.	3.5	136
328	In Situ13C Fourier Transform Pulsed Field Gradient NMR Study of Intracrystalline Diffusion during Isopropanol Conversion in X-Type Zeolites. Journal of Catalysis, 1997, 167, 248-255.	6.2	42
329	In SituPFG NMR Study of Intracrystalline Diffusion during Ethene Conversion in ZSM-5. Journal of Catalysis, 1996, 163, 130-137.	6.2	42
330	Investigation of the dynamics of benzene in silicalite using transition-state theory. Studies in Surface Science and Catalysis, 1995, 98, 240-241.	1.5	5
331	NMR study of intrinsic diffusion and reaction in CsNaX type zeolites. Applied Catalysis A: General, 1995, 130, 227-241.	4.3	22
332	Investigation of the dynamics of benzene in silicalite using Transition-State Theory. The Journal of Physical Chemistry, 1994, 98, 11948-11961.	2.9	93
333	A hierarchical atomistic/lattice simulation approach for the prediction of adsorption thermodynamics of benzene in silicalite. The Journal of Physical Chemistry, 1994, 98, 5111-5119.	2.9	87
334	Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions. The Journal of Physical Chemistry, 1993, 97, 13742-13752.	2.9	366
335	Molecular Simulations of Methane Adsorption in Silicalite. Molecular Simulation, 1991, 8, 73-92.	2.0	61
336	Rapid Quantification of Mass Transfer Barriers in Metal–Organic Framework Crystals. Chemistry of Materials, 0, , .	6.7	10