Nicholas Topley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8581874/publications.pdf

Version: 2024-02-01

47 papers 4,138 citations

236925 25 h-index 243625 44 g-index

48 all docs 48 docs citations

times ranked

48

4246 citing authors

#	Article	IF	Citations
1	Morphologic Changes in the Peritoneal Membrane of Patients with Renal Disease. Journal of the American Society of Nephrology: JASN, 2002, 13, 470-479.	6.1	851
2	The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB Journal, 2001, 15, 43-58.	0.5	539
3	The Euro-Balance Trial: The effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney International, 2004, 66, 408-418.	5.2	355
4	Interleukin-6 Signaling Drives Fibrosis in Unresolved Inflammation. Immunity, 2014, 40, 40-50.	14.3	297
5	Human peritoneal mesothelial cells synthesize interleukin-6: Induction by IL- $1\hat{l}^2$ and TNF $\hat{l}\pm$. Kidney International, 1993, 43, 226-233.	5.2	238
6	Interplay between IFN- \hat{I}^3 and IL-6 signaling governs neutrophil trafficking and apoptosis during acute inflammation. Journal of Clinical Investigation, 2003, 112, 598-607.	8.2	229
7	The Pathophysiology of the Peritoneal Membrane. Journal of the American Society of Nephrology: JASN, 2010, 21, 1077-1085.	6.1	221
8	Independent Effects of Systemic and Peritoneal Inflammation on Peritoneal Dialysis Survival. Journal of the American Society of Nephrology: JASN, 2013, 24, 2071-2080.	6.1	161
9	A Rapid Crosstalk of Human γδT Cells and Monocytes Drives the Acute Inflammation in Bacterial Infections. PLoS Pathogens, 2009, 5, e1000308.	4.7	114
10	Human Neutrophil Clearance of Bacterial Pathogens Triggers Anti-Microbial $\hat{l}^3\hat{l}$ T Cell Responses in Early Infection. PLoS Pathogens, 2011, 7, e1002040.	4.7	106
11	Human peritoneal fibroblast proliferation in 3-dimensional culture: Modulation by cytokines, growth factors and peritoneal dialysis effluent. Kidney International, 1997, 51, 205-215.	5.2	73
12	Superinduction of IL-6 synthesis in human peritoneal mesothelial cells is related to the induction and stabilization of IL-6 mRNA. Kidney International, 1996, 50, 1212-1223.	5.2	71
13	Interleukin-6 Levels Decrease in Effluent from Patients Dialyzed with Bicarbonate/Lactate–Based Peritoneal Dialysis Solutions. Peritoneal Dialysis International, 2001, 21, 102-107.	2.3	70
14	IL-6 Trans–Signaling Links Inflammation with Angiogenesis in the Peritoneal Membrane. Journal of the American Society of Nephrology: JASN, 2017, 28, 1188-1199.	6.1	67
15	Cell Function and Viability in Glucose Polymer Peritoneal Dialysis Fluids. Peritoneal Dialysis International, 1993, 13, 104-111.	2.3	57
16	Machine-learning algorithms define pathogen-specific local immune fingerprints inÂperitoneal dialysis patients with bacterial infections. Kidney International, 2017, 92, 179-191.	5.2	56
17	Pathogen-Specific Local Immune Fingerprints Diagnose Bacterial Infection in Peritoneal Dialysis Patients. Journal of the American Society of Nephrology: JASN, 2013, 24, 2002-2009.	6.1	54
18	Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes. Kidney International, 2017, 91, 1088-1103.	5.2	53

#	Article	IF	Citations
19	Peritoneal inflammation precedes encapsulating peritoneal sclerosis: results from the GLOBAL Fluid Study. Nephrology Dialysis Transplantation, 2016, 31, 480-486.	0.7	47
20	Unconventional Human T Cells Accumulate at the Site of Infection in Response to Microbial Ligands and Induce Local Tissue Remodeling. Journal of Immunology, 2016, 197, 2195-2207.	0.8	42
21	Toll-Like Receptors 2 and 4 Are Potential Therapeutic Targets in Peritoneal Dialysis–Associated Fibrosis. Journal of the American Society of Nephrology: JASN, 2017, 28, 461-478.	6.1	37
22	Identification of clinical and urine biomarkers for uncomplicated urinary tract infection using machine learning algorithms. Scientific Reports, 2019, 9, 19694.	3.3	36
23	Biocompatible Solutions and Long-Term Changes in Peritoneal Solute Transport. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 1526-1533.	4.5	34
24	Impact of Peritoneal Dialysis Solutions on Peritoneal Immune Defense. Peritoneal Dialysis International, 1993, 13, 291-294.	2.3	33
25	miR-21 Promotes Fibrogenesis in Peritoneal Dialysis. American Journal of Pathology, 2017, 187, 1537-1550.	3.8	30
26	ILâ€10 differentially controls the infiltration of inflammatory macrophages and antigenâ€presenting cells during inflammation. European Journal of Immunology, 2016, 46, 2222-2232.	2.9	29
27	Targeting Toll-like receptors with soluble Toll-like receptor 2 prevents peritoneal dialysis solution–induced fibrosis. Kidney International, 2018, 94, 346-362.	5.2	28
28	A prospective, proteomics study identified potential biomarkers of encapsulating peritoneal sclerosis in peritoneal effluent. Kidney International, 2017, 92, 988-1002.	5.2	24
29	Baseline Serum Interleukin-6 Predicts Cardiovascular Events in Incident Peritoneal Dialysis Patients. Peritoneal Dialysis International, 2015, 35, 35-42.	2.3	23
30	Peritoneal Protein Clearance Is a Function of Local Inflammation and Membrane Area Whereas Systemic Inflammation and Comorbidity Predict Survival of Incident Peritoneal Dialysis Patients. Frontiers in Physiology, 2019, 10, 105.	2.8	22
31	Measurement of innate immune response biomarkers in peritoneal dialysis effluent using aÂrapid diagnostic point-of-care device asÂaÂdiagnostic indicator of peritonitis. Kidney International, 2020, 97, 1253-1259.	5.2	21
32	Factors affecting the measurement of chemiluminescence in stimulated human polymorphonuclear leucocytes. Luminescence, 1986, 1, 15-27.	0.0	19
33	Can Artifact Mimic the Pathology of the Peritoneal Mesothelium?. Peritoneal Dialysis International, 2003, 23, 428-433.	2.3	17
34	Inhibition of Nitric Oxide Synthase Reverses Permeability Changes in a Mouse Model of Acute Peritonitis. Peritoneal Dialysis International, 2005, 25, 11-14.	2.3	16
35	Pathogen-Specific Immune Fingerprints during Acute Infection: The Diagnostic Potential of Human γÎÂ′ T-Cells. Frontiers in Immunology, 2014, 5, 572.	4.8	13
36	Insulin Stimulates the Activity of Na+/K+-Atpase in Human Peritoneal Mesothelial Cells. Peritoneal Dialysis International, 1997, 17, 186-193.	2.3	11

3

#	Article	IF	CITATIONS
37	CA125: Holy Grail or a Poisoned Chalice. Nephron Clinical Practice, 2005, 100, c52-c54.	2.3	10
38	How Can Genetic Advances Impact on Experimental Models of Encapsulating Peritoneal Sclerosis?. Peritoneal Dialysis International, 2008, 28, 16-20.	2.3	8
39	Utility of Urinary Biomarkers in Predicting Loss of Residual Renal Function: The BAL Anz Trial. Peritoneal Dialysis International, 2015, 35, 159-171.	2.3	7
40	Suppression of pro-inflammatory T-cell responses by human mesothelial cells. Nephrology Dialysis Transplantation, 2013, 28, 1743-1750.	0.7	6
41	Animal models in peritoneal dialysis: more questions than answers?. Peritoneal Dialysis International, 2005, 25, 33-4.	2.3	6
42	Peritoneal defence in peritoneal dialysis. Nephrology, 1996, 2, s167-s171.	1.6	4
43	Peritoneal dialysis solution biocompatibility testing: a realistic alternative?. Peritoneal Dialysis International, 2005, 25, 348-51.	2.3	2
44	Early Peritoneal Responses to Bacterial Invasion: Cellular Exudation. Sepsis, 1999, 3, 303-309.	0.5	1
45	A Spoonful of Sugar. Nephron Clinical Practice, 2003, 93, c83-c84.	2.3	0
46	FP563MICRORNA REGULATION OF MACROPHAGE PHENOTYPE IN PERITONEAL FIBROSIS. Nephrology Dialysis Transplantation, 2015, 30, iii262-iii262.	0.7	0
47	The Authors Reply. Kidney International, 2017, 92, 1290.	5 . 2	O