
Molly Megraw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/858114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quality control and evaluation of plant epigenomics data. Plant Cell, 2022, 34, 503-513.	6.6	13
2	Metabolomics analysis reveals both plant variety and choice of hormone treatment modulate vinca alkaloid production in <i>Catharanthus roseus</i> . Plant Direct, 2020, 4, e00267.	1.9	5
3	RNA-Seq analysis of genes affected by Cyclophilin A/DIAGEOTROPICA (DGT) in tomato root development. F1000Research, 2020, 9, 1175.	1.6	2
4	Arabidopsis bioinformatics resources: The current state, challenges, and priorities for the future. Plant Direct, 2019, 3, e00109.	1.9	14
5	IndeCut evaluates performance of network motif discovery algorithms. Bioinformatics, 2018, 34, 1514-1521.	4.1	7
6	Convmd: Convolutive Matrix Decomposition For Classification Of Matrix Data. , 2018, , .		0
7	Identification of transcription factors from NF-Y, NAC, and SPL families responding to osmotic stress in multiple tomato varieties. Plant Science, 2018, 274, 441-450.	3.6	9
8	NanoCAGE-XL: An Approach to High-Confidence Transcription Start Site Sequencing. Methods in Molecular Biology, 2018, 1830, 225-237.	0.9	2
9	DNase I SIM: A Simplified In-Nucleus Method for DNase I Hypersensitive Site Sequencing. Methods in Molecular Biology, 2017, 1629, 141-154.	0.9	1
10	The Next Generation of Training for Arabidopsis Researchers: Bioinformatics and Quantitative Biology. Plant Physiology, 2017, 175, 1499-1509.	4.8	11
11	Establishment of Expression in the SHORTROOT-SCARECROW Transcriptional Cascade through Opposing Activities of Both Activators and Repressors. Developmental Cell, 2016, 39, 585-596.	7.0	54
12	Small Genetic Circuits and MicroRNAs: Big Players in Polymerase II Transcriptional Control in Plants. Plant Cell, 2016, 28, 286-303.	6.6	38
13	Improved DNase-seq protocol facilitates high resolution mapping of DNase I hypersensitive sites in roots in Arabidopsis thaliana. Plant Methods, 2015, 11, 42.	4.3	20
14	Environmental Stresses Modulate Abundance andÂTiming of Alternatively Spliced Circadian Transcripts in Arabidopsis. Molecular Plant, 2015, 8, 207-227.	8.3	142
15	The cyclophilin A DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation. Development (Cambridge), 2015, 142, 712-21.	2.5	57
16	Alternative splicing in plants: directing traffic at the crossroads of adaptation and environmental stress. Current Opinion in Plant Biology, 2015, 24, 125-135.	7.1	215
17	TIPR: transcription initiation pattern recognition on a genome scale. Bioinformatics, 2015, 31, 3725-3732.	4.1	4
18	NanoCAGE-XL and CapFilter: an approach to genome wide identification of high confidence transcription start sites. BMC Genomics, 2015, 16, 597.	2.8	38

Molly Megraw

#	Article	IF	CITATIONS
19	Environmental Stresses Modulate Abundance and Timing of Alternatively Spliced Circadian Transcripts in Arabidopsis. Molecular Plant, 2014, , .	8.3	9
20	Paired-End Analysis of Transcription Start Sites in <i>Arabidopsis</i> Reveals Plant-Specific Promoter Signatures Â. Plant Cell, 2014, 26, 2746-2760.	6.6	112
21	A comparative study of ripening among berries of the grape cluster reveals an altered transcriptional programme and enhanced ripening rate in delayed berries. Journal of Experimental Botany, 2014, 65, 5889-5902.	4.8	59
22	Sustained-input switches for transcription factors and microRNAs are central building blocks of eukaryotic gene circuits. Genome Biology, 2013, 14, R85.	9.6	16
23	The protein expression landscape of the <i>Arabidopsis</i> root. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6811-6818.	7.1	140
24	A steleâ€enriched gene regulatory network in the Arabidopsis root. Molecular Systems Biology, 2011, 7, 459.	7.2	145
25	lsoform specific gene auto-regulation via miRNAs: a case study on miR-128b and ARPP-21. Theoretical Chemistry Accounts, 2010, 125, 593-598.	1.4	13
26	miRGen 2.0: a database of microRNA genomic information and regulation. Nucleic Acids Research, 2010, 38, D137-D141.	14.5	130
27	Editing of Epstein-Barr Virus-encoded BART6 MicroRNAs Controls Their Dicer Targeting and Consequently Affects Viral Latency*. Journal of Biological Chemistry, 2010, 285, 33358-33370.	3.4	200
28	MicroRNA Promoter Analysis. Methods in Molecular Biology, 2010, 592, 149-161.	0.9	22
29	A transcription factor affinity-based code for mammalian transcription initiation. Genome Research, 2009, 19, 644-656.	5.5	54
30	A Suite of Resources for the Study of microRNA Ontology and Function. , 2009, , 45-56.		0
31	Frequency and fate of microRNA editing in human brain. Nucleic Acids Research, 2008, 36, 5270-5280.	14.5	298
32	miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Research, 2007, 35, D149-D155.	14.5	272
33	Computational approaches to elucidate miRNA biology. , 2007, , 187-198.		2
34	A guide through present computational approaches for the identification of mammalian microRNA targets. Nature Methods, 2006, 3, 881-886.	19.0	525
35	MicroRNA promoter element discovery in Arabidopsis. Rna, 2006, 12, 1612-1619.	3.5	175
36	Computational Identification of Regulatory Factors Involved in MicroRNA Transcription. Lecture Notes in Computer Science, 2005, , 457-468.	1.3	5