Meththika Vithanage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8580866/publications.pdf

Version: 2024-02-01

240 papers

17,804 citations

20036 63 h-index 124 g-index

253 all docs

253 docs citations

times ranked

253

14629 citing authors

#	Article	IF	CITATIONS
1	Hydrometallurgical processes for heavy metals recovery from industrial sludges. Critical Reviews in Environmental Science and Technology, 2022, 52, 1022-1062.	6.6	57
2	Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 2022, 67, 150-200.	9.4	245
3	Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. Journal of Hazardous Materials, 2022, 421, 126627.	6.5	138
4	Effect of acid modified tea-waste biochar on crop productivity of red onion (Allium cepa L.). Chemosphere, 2022, 288, 132551.	4.2	13
5	Generating alternative fuel and bioplastics from medical plastic waste and waste frying oil using microwave co-pyrolysis combined with microbial fermentation. Renewable and Sustainable Energy Reviews, 2022, 153, 111790.	8.2	28
6	Antimony contamination and its risk management in complex environmental settings: A review. Environment International, 2022, 158, 106908.	4.8	125
7	Enhanced removal of ammonium from water using sulfonated reed waste biochar-A lab-scale investigation. Environmental Pollution, 2022, 292, 118412.	3.7	11
8	Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review. Environmental Pollution, 2022, 293, 118564.	3.7	63
9	A systematic review on adsorptive removal of hexavalent chromium from aqueous solutions: Recent advances. Science of the Total Environment, 2022, 809, 152055.	3.9	69
10	Tackling water security: A global need of cross-cutting approaches. Journal of Environmental Management, 2022, 306, 114447.	3.8	9
11	Ecological Effects of Chemical Contaminants Adsorbed to Microplastics. , 2022, , 1019-1048.		0
12	Fate and Behavior of Microplastics in Freshwater Systems. , 2022, , 781-811.		1
13	Recognizing the groundwater related to chronic kidney disease of unknown etiology by humic-like organic matter. Npj Clean Water, 2022, 5, .	3.1	12
14	Surface interactions of oxytetracycline on municipal solid waste-derived biochar–montmorillonite composite. Sustainable Environment, 2022, 8, .	1.2	6
15	Cyanotoxins uptake and accumulation in crops: Phytotoxicity and implications on human health. Toxicon, 2022, 211, 21-35.	0.8	16
16	Retention of sulfamethoxazole by cinnamon wood biochar and its efficacy of reducing bioavailability and plant uptake in soil. Chemosphere, 2022, 297, 134073.	4.2	8
17	Colloidal biochar for enhanced adsorption of antibiotic ciprofloxacin in aqueous and synthetic hydrolyzed human urine matrices. Chemosphere, 2022, 297, 133984.	4.2	20
18	Nitrogen transformation in slightly polluted surface water by a novel biofilm reactor: Long-term performance and microbial population characteristics. Science of the Total Environment, 2022, 829, 154623.	3.9	3

#	Article	IF	CITATIONS
19	Unprecedented marine microplastic contamination from the X-Press Pearl container vessel disaster. Science of the Total Environment, 2022, 828, 154374.	3.9	26
20	Amino-functionalized biochars for the detoxification and removal of hexavalent chromium in aqueous media. Environmental Research, 2022, 211, 113073.	3.7	30
21	Lead time of early warning by wastewater surveillance for COVID-19: Geographical variations and impacting factors. Chemical Engineering Journal, 2022, 441, 135936.	6.6	40
22	Phytoremediation prospects of per- and polyfluoroalkyl substances: A review. Environmental Research, 2022, 212, 113311.	3.7	20
23	Biofilm formation and its implications on the properties and fate of microplastics in aquatic environments: A review. Journal of Hazardous Materials Advances, 2022, 6, 100077.	1.2	43
24	Biochar production with amelioration of microwave-assisted pyrolysis: Current scenario, drawbacks and perspectives. Bioresource Technology, 2022, 355, 127303.	4.8	50
25	Influence of biochar on soil biology in the charosphere. , 2022, , 273-291.		2
26	Deposition of trace metals associated with atmospheric particulate matter: Environmental fate and health risk assessment. Chemosphere, 2022, 303, 135051.	4.2	35
27	Distribution, transformation and remediation of poly- and per-fluoroalkyl substances (PFAS) in wastewater sources. Chemical Engineering Research and Design, 2022, 164, 91-108.	2.7	48
28	A facile synthesis of MgAl/layered double hydroxides from aluminum wastes. Materials Letters, 2022, 324, 132624.	1.3	5
29	Pharmaceutical and Personal Care Products (PPCPs) in the environment: Plant uptake, translocation, bioaccumulation, and human health risks. Critical Reviews in Environmental Science and Technology, 2021, 51, 1221-1258.	6.6	127
30	Biomass valorization and phytoremediation as integrated Technology for Municipal Solid Waste Management for developing economic context. Biomass Conversion and Biorefinery, 2021, 11, 363-382.	2.9	13
31	Immobilization and retention of caffeine in soil amended with Ulva reticulata biochar. Journal of Environmental Management, 2021, 281, 111852.	3.8	17
32	Drought in South Asia: A Review of Drought Assessment and Prediction in South Asian Countries. Atmosphere, 2021, 12, 369.	1.0	39
33	Efficacy of agricultural waste derived biochar for arsenic removal: Tackling water quality in the Indo-Gangetic plain. Journal of Environmental Management, 2021, 281, 111814.	3.8	45
34	Effect of traffic congestion and vegetation on airborne bacteria in a city of a developing country. Air Quality, Atmosphere and Health, 2021, 14, 1103-1116.	1.5	2
35	Carbon sequestration value of biosolids applied to soil: A global meta-analysis. Journal of Environmental Management, 2021, 284, 112008.	3.8	18
36	Computational and experimental assessment of pH and specific ions on the solute solvent interactions of clay-biochar composites towards tetracycline adsorption: Implications on wastewater treatment. Journal of Environmental Management, 2021, 283, 111989.	3.8	39

#	Article	IF	CITATIONS
37	Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environment International, 2021, 149, 106367.	4.8	276
38	Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments. Water Research, 2021, 196, 117011.	5.3	253
39	Abstraction of nitrates and phosphates from water by sawdust- and rice husk-derived biochars: Their potential as N- and P-loaded fertilizer for plant productivity in nutrient deficient soil. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105073.	2.6	16
40	Carbon-based adsorbents for fluoroquinolone removal from water and wastewater: A critical review. Environmental Research, 2021, 197, 111091.	3.7	44
41	Ethylbenzene and toluene interactions with biochar from municipal solid waste in single and dual systems. Environmental Research, 2021, 197, 111102.	3.7	16
42	Trace Metals in the Atmospheric Deposition and Gaseous Emissions around Karadiyana Municipal Solid Waste Dumpsite, Sri Lanka. , $2021, \dots$		0
43	Biochar-based Barricade and Wetland as an Integrated Landfill Leachate Treatment System. , 2021, , .		0
44	A critical review on biochar-based engineered hierarchical porous carbon for capacitive charge storage. Renewable and Sustainable Energy Reviews, 2021, 145, 111029.	8.2	105
45	Lability and Bioavailability of Toxic Heavy Metals in Ratnapura District Gem Sediments, Sri Lanka., 2021,		0
46	Functionalizing non-smectic clay via methoxy-modification for enhanced removal and recovery of oxytetracycline from aqueous media. Chemosphere, 2021, 276, 130079.	4.2	27
47	Anammox bacteria in treating ammonium rich wastewater: Recent perspective and appraisal. Bioresource Technology, 2021, 334, 125240.	4.8	59
48	Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review. Journal of Hazardous Materials, 2021, 416, 125702.	6.5	46
49	Co-hydrothermal carbonization of swine and chicken manure: Influence of cross-interaction on hydrochar and liquid characteristics. Science of the Total Environment, 2021, 786, 147381.	3.9	38
50	Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade?. Journal of Hazardous Materials, 2021, 420, 126534.	6.5	150
51	Distribution, behaviour, bioavailability and remediation of poly- and per-fluoroalkyl substances (PFAS) in solid biowastes and biowaste-treated soil. Environment International, 2021, 155, 106600.	4.8	74
52	Mechanistic interaction of ciprofloxacin on zeolite modified seaweed (Sargassum crassifolium) derived biochar: Kinetics, isotherm and thermodynamics. Chemosphere, 2021, 281, 130676.	4.2	69
53	Risk factors for endemic chronic kidney disease of unknown etiology in Sri Lanka: Retrospect of water security in the dry zone. Science of the Total Environment, 2021, 795, 148839.	3.9	25
54	Propensity and appraisal of biochar performance in removal of oil spills: A comprehensive review. Environmental Pollution, 2021, 288, 117676.	3.7	39

#	Article	IF	Citations
55	From mine to mind and mobiles $\hat{a} \in \text{``Lithium contamination and its risk management. Environmental Pollution, 2021, 290, 118067.}$	3.7	58
56	Compost as a carrier for microplastics and plastic-bound toxic metals into agroecosystems. Current Opinion in Environmental Science and Health, 2021, 24, 100297.	2.1	36
57	Adsorptive removal of fluoride using biochar $\hat{a} \in A$ potential application in drinking water treatment. Separation and Purification Technology, 2021, 278, 119106.	3.9	47
58	A review on water governance in Sri Lanka: the lessons learnt for future water policy formulation. Water Policy, 2021, 23, 255-273.	0.7	9
59	Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation. International Journal of Environmental Research and Public Health, 2021, 18, 11055.	1.2	29
60	Harnessing biofertilizer from human urine via chemogenic and biogenic routes: Synthesis, characterization and agronomic application. Environmental Technology and Innovation, 2021, 25, 102152.	3.0	1
61	Multiphase Volatilization of Halogens at the Soilâ€Atmosphere Interface on Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006929.	1.5	7
62	Biochar amalgamation with clay: Enhanced performance for environmental remediation. Advances in Chemical Pollution, Environmental Management and Protection, 2021, 7, 1-37.	0.3	1
63	Animal carcass burial management: implications for sustainable biochar use. Applied Biological Chemistry, 2021, 64, 91.	0.7	3
64	Microwave and open vessel digestion methods for biochar. Chemosphere, 2020, 239, 124788.	4.2	18
65	Halloysite nanoclay supported adsorptive removal of oxytetracycline antibiotic from aqueous media. Journal of Hazardous Materials, 2020, 384, 121301.	6.5	60
66	Clay–polymer nanocomposites: Progress and challenges for use in sustainable water treatment. Journal of Hazardous Materials, 2020, 383, 121125.	6.5	132
67	E-waste as a challenge for public and ecosystem health. , 2020, , 101-117.		4
68	Phytoremediation for E-waste contaminated sites. , 2020, , 141-170.		9
69	Urban mining of E-waste: treasure hunting for precious nanometals. , 2020, , 19-54.		16
70	Electrochemical enhanced metal extraction from E-waste. , 2020, , 119-139.		5
71	Green synthesis of graphitic nanobiochar for the removal of emerging contaminants in aqueous media. Science of the Total Environment, 2020, 706, 135725.	3.9	76
72	Biochar based sorptive remediation of steroidal estrogen contaminated aqueous systems: A critical review. Environmental Research, 2020, 191, 110183.	3.7	34

#	Article	IF	CITATIONS
73	Frontier review on the propensity and repercussion of SARS-CoV-2 migration to aquatic environment. Journal of Hazardous Materials Letters, 2020, 1, 100001.	2.0	49
74	Nanobiochar: production, properties, and multifunctional applications. Environmental Science: Nano, 2020, 7, 3279-3302.	2.2	64
75	Macro, colloidal and nanobiochar for oxytetracycline removal in synthetic hydrolyzed human urine. Environmental Pollution, 2020, 267, 115683.	3.7	26
76	Making Waves Perspectives of Modelling and Monitoring of SARS-CoV-2 in Aquatic Environment for COVID-19 Pandemic. Current Pollution Reports, 2020, 6, 468-479.	3.1	22
77	Implications of layered double hydroxides assembled biochar composite in adsorptive removal of contaminants: Current status and future perspectives. Science of the Total Environment, 2020, 737, 139718.	3.9	47
78	A review on design, material selection, mechanism, and modelling of permeable reactive barrier for community-scale groundwater treatment. Environmental Technology and Innovation, 2020, 19, 100917.	3.0	53
79	Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: Implications for vector transport in water. Environmental Technology and Innovation, 2020, 19, 100971.	3.0	118
80	Microbe mediated immobilization of arsenic in the rice rhizosphere after incorporation of silica impregnated biochar composites. Journal of Hazardous Materials, 2020, 398, 123096.	6.5	46
81	Biochar-mediated soils for efficient use of agrochemicals. , 2020, , 621-645.		2
82	Sorption and desorption of agro-pesticides in soils. , 2020, , 189-205.		16
83	Caffeine removal by Gliricidia sepium biochar: Influence of pyrolysis temperature and physicochemical properties. Environmental Research, 2020, 189, 109865.	3.7	48
84	Anammox, biochar column and subsurface constructed wetland as an integrated system for treating municipal solid waste derived landfill leachate from an open dumpsite. Environmental Research, 2020, 189, 109880.	3.7	26
85	Phytoremediation of fluoride from the environmental matrices: A review on its application strategies. Groundwater for Sustainable Development, 2020, 10, 100349.	2.3	19
86	Impact of agrochemicals on soil health. , 2020, , 161-187.		49
87	Potential of biochar and organic amendments for reclamation of coastal acidic-salt affected soil. Biochar, 2020, 2, 107-120.	6.2	44
88	Exploration of an Extracellular Polymeric Substance from Earthworm Gut Bacterium (Bacillus) Tj ETQq0 0 0 rgB (Switzerland), 2020, 10, 349.	T /Overlock 1.3	10 Tf 50 147 38
89	Engineered tea-waste biochar for the removal of caffeine, a model compound in pharmaceuticals and personal care products (PPCPs), from aqueous media. Environmental Technology and Innovation, 2020, 19, 100847.	3.0	74
90	Fate and Behavior of Microplastics in Freshwater Systems. , 2020, , 1-31.		1

#	Article	IF	CITATIONS
91	Ecological Effects of Chemical Contaminants Adsorbed to Microplastics. , 2020, , 1-31.		O
92	Status of Particulate Marine Plastics in Sri Lanka. , 2020, , 297-326.		1
93	Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review. Environment International, 2019, 131, 104974.	4.8	43
94	Sorption process of municipal solid waste biochar-montmorillonite composite for ciprofloxacin removal in aqueous media. Chemosphere, 2019, 236, 124384.	4.2	117
95	Floating duckweed mitigated ammonia volatilization and increased grain yield and nitrogen use efficiency of rice in biochar amended paddy soils. Chemosphere, 2019, 237, 124532.	4.2	38
96	Heavy metal dissolution mechanisms from electrical industrial sludge. Science of the Total Environment, 2019, 696, 133922.	3.9	16
97	Hexavalent chromium removal from water by microalgal-based materials: Adsorption, desorption and recovery studies. Bioresource Technology, 2019, 293, 122064.	4.8	111
98	The influence of three acid modifications on the physicochemical characteristics of tea-waste biochar pyrolyzed at different temperatures: a comparative study. RSC Advances, 2019, 9, 17612-17622.	1.7	87
99	Influence of soil water content and soil amendments on trace metal release and seedling growth in serpentine soil. Journal of Soils and Sediments, 2019, 19, 3908-3921.	1.5	7
100	A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - A review. Environment International, 2019, 127, 819-847.	4.8	280
101	Modification of biochar properties using CO2. Chemical Engineering Journal, 2019, 372, 383-389.	6.6	101
102	Sustainable sludge management by removing emerging contaminants from urban wastewater using carbon nanotubes., 2019,, 553-571.		12
103	Sorptive removal of pharmaceutical and personal care products from water and wastewater., 2019,, 213-238.		18
104	Hydrometallurgical Recovery of Metals From E-waste. , 2019, , 225-246.		37
105	South Asian perspective on temperature and rainfall extremes: A review. Atmospheric Research, 2019, 225, 110-120.	1.8	63
106	Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media. Journal of Environmental Management, 2019, 238, 315-322.	3.8	164
107	Biochar fromÂmunicipal solid waste for resource recovery and pollution remediation. Environmental Chemistry Letters, 2019, 17, 1225-1235.	8.3	81
108	Sorptive removal of toluene and m-xylene by municipal solid waste biochar: Simultaneous municipal solid waste management and remediation of volatile organic compounds. Journal of Environmental Management, 2019, 238, 323-330.	3.8	50

#	Article	IF	Citations
109	Biochar-based engineered composites for sorptive decontamination of water: A review. Chemical Engineering Journal, 2019, 372, 536-550.	6.6	264
110	Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research? Environment International, 2019, 127, 52-69.	4.8	101
111	Soil lead immobilization by biochars in short-term laboratory incubation studies. Environment International, 2019, 127, 190-198.	4.8	70
112	Municipal solid waste biochar-bentonite composite for the removal of antibiotic ciprofloxacin from aqueous media. Journal of Environmental Management, 2019, 236, 428-435.	3.8	93
113	Transgenic Plants. , 2019, , 89-102.		24
114	Technological innovation for soil/sediment remediation. Journal of Soils and Sediments, 2019, 19, 3881-3882.	1.5	4
115	Performance of metal–organic frameworks for the adsorptive removal of potentially toxic elements in a water system: a critical review. RSC Advances, 2019, 9, 34359-34376.	1.7	101
116	Biochar for Sustainable Agriculture. , 2019, , 211-224.		7
117	Potential toxicity of trace elements and nanomaterials to Chinese cabbage in arsenic- and lead-contaminated soil amended with biochars. Environmental Geochemistry and Health, 2019, 41, 1777-1791.	1.8	24
118	Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. Environmental Geochemistry and Health, 2019, 41, 1813-1831.	1.8	149
119	Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment. Environmental Geochemistry and Health, 2019, 41, 1647-1661.	1.8	101
120	Municipal solid waste-derived biochar for the removal of benzene from landfill leachate. Environmental Geochemistry and Health, 2019, 41, 1739-1753.	1.8	38
121	Assessment of Atmospheric Deposition and Spatial Variability of Trace Metals in Kandy City and Suburbs using Bio-monitoring Technique in Mosses. Vidyodaya Journal of Science, 2019, 21, 1.	0.1	0
122	Clay-biochar composite for arsenic removal from aqueous media. , 2019, , 437-438.		1
123	Soil Enzyme Activities in Waste Biochar Amended Multi-Metal Contaminated Soil; Effect of Different Pyrolysis Temperatures and Application Rates. Communications in Soil Science and Plant Analysis, 2018, 49, 635-643.	0.6	23
124	Trace element dynamics of biosolids-derived microbeads. Chemosphere, 2018, 199, 331-339.	4.2	61
125	Influence of bioenergy waste biochar on proton- and ligand-promoted release of Pb and Cu in a shooting range soil. Science of the Total Environment, 2018, 625, 547-554.	3.9	25
126	Thiolated arsenic in natural systems: What is current, what is new and what needs to be known. Environment International, 2018, 115, 370-386.	4.8	45

#	Article	IF	Citations
127	Aging Effects of Organic and Inorganic Fertilizers on Phosphorus Fractionation in a Calcareous Sandy Loam Soil. Pedosphere, 2018, 28, 873-883.	2.1	38
128	Five Decadal Trends in Averages and Extremes of Rainfall and Temperature in Sri Lanka. Advances in Meteorology, 2018, 2018, 1-13.	0.6	32
129	Exploring potential applications of a novel extracellular polymeric substance synthesizing bacterium (Bacillus licheniformis) isolated from gut contents of earthworm (Metaphire posthuma) in environmental remediation. Biodegradation, 2018, 29, 323-337.	1.5	27
130	Health risk assessment of heavy metals in atmospheric deposition in a congested city environment in a developing country: Kandy City, Sri Lanka. Journal of Environmental Management, 2018, 220, 198-206.	3.8	56
131	Municipal Waste Biochar for Energy and Pollution Remediation. Environmental Chemistry for A Sustainable World, 2018, , 227-252.	0.3	8
132	Application of Geospatial Techniques for Groundwater Quality and Availability Assessment: A Case Study in Jaffna Peninsula, Sri Lanka. ISPRS International Journal of Geo-Information, 2018, 7, 20.	1.4	29
133	Potential application of selected metal resistant phosphate solubilizing bacteria isolated from the gut of earthworm (Metaphire posthuma) in plant growth promotion. Geoderma, 2018, 330, 117-124.	2.3	82
134	Overview Scheme for Nickel Removal and Recovery from Wastes., 2018,, 319-340.		5
135	Bioenergy-derived waste biochar for reducing mobility, bioavailability, and phytotoxicity of chromium in anthropized tannery soil. Journal of Soils and Sediments, 2017, 17, 731-740.	1.5	38
136	Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil. Journal of Soils and Sediments, 2017, 17, 665-673.	1.5	80
137	Medical geology in the framework of the sustainable development goals. Science of the Total Environment, 2017, 581-582, 87-104.	3.9	90
138	Microorganisms and heavy metals associated with atmospheric deposition in a congested urban environment of a developing country: Sri Lanka. Science of the Total Environment, 2017, 584-585, 803-812.	3.9	50
139	Role of Biosurfactants on Microbial Degradation of Oil-Contaminated Soils. , 2017, , 165-181.		2
140	Role of Rhizospheric Microbes in Heavy Metal Uptake by Plants. , 2017, , 147-163.		19
141	Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environmental Pollution, 2017, 223, 545-559.	3.7	331
142	Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. Journal of Cleaner Production, 2017, 156, 581-588.	4.6	79
143	Isolation, purification and analysis of dissolved organic carbon from Gohagoda uncontrolled open dumpsite leachate, Sri Lanka. Environmental Technology (United Kingdom), 2017, 38, 1610-1618.	1.2	8
144	Contrasting effects of engineered carbon nanotubes on plants: a review. Environmental Geochemistry and Health, 2017, 39, 1421-1439.	1.8	85

#	Article	IF	CITATIONS
145	Medical geology of endemic goiter in Kalutara, Sri Lanka; distribution and possible causes. Environmental Geochemistry and Health, 2017, 39, 1501-1511.	1.8	2
146	Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil. Environmental Geochemistry and Health, 2017, 39, 1409-1420.	1.8	53
147	Phytoremediation of Landfill Leachates. , 2017, , 439-467.		4
148	Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka. Environmental Geochemistry and Health, 2017, 39, 1397-1407.	1.8	10
149	The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil. Chemosphere, 2017, 189, 565-573.	4.2	41
150	Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review. Bioresource Technology, 2017, 246, 150-159.	4.8	440
151	Biochar's Influence as a Soil Amendment for Essential Plant Nutrient Uptake. , 2017, , 47-67.		5
152	Application of graphene for decontamination of water; Implications for sorptive removal. Groundwater for Sustainable Development, 2017, 5, 206-215.	2.3	56
153	Applications of biochar in redox-mediated reactions. Bioresource Technology, 2017, 246, 271-281.	4.8	322
154	Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars. Environmental Science and Pollution Research, 2017, 24, 22755-22763.	2.7	45
155	Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria. Journal of Environmental Management, 2017, 186, 293-300.	3.8	73
156	Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environmental Geochemistry and Health, 2017, 39, 391-401.	1.8	63
157	Interaction of arsenic with biochar in soil and water: A critical review. Carbon, 2017, 113, 219-230.	5.4	292
158	Advances and future directions of biochar characterization methods and applications. Critical Reviews in Environmental Science and Technology, 2017, 47, 2275-2330.	6.6	194
159	Water Resources Management: Innovation and Challenges in a Changing World. Water (Switzerland), 2017, 9, 281.	1.2	30
160	Influence of <i> Gliricidia sepium </i> Biochar on Attenuate Perchlorate-Induced Heavy Metal Release in Serpentine Soil. Journal of Chemistry, 2017, 2017, 1-8.	0.9	14
161	Enhance Oil & Enhance Oil & Exploration with Data-Driven Geophysical and Petrophysical Models., 2017,,.		4
162	Insights into Starch Coated Nanozero Valent Iron-Graphene Composite for Cr(VI) Removal from Aqueous Medium. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	20

#	Article	IF	CITATIONS
163	Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress. South African Journal of Botany, 2016, 105, 19-24.	1.2	56
164	Natural Arsenic in Global Groundwaters: Distribution and Geochemical Triggers for Mobilization. Current Pollution Reports, 2016, 2, 68-89.	3.1	177
165	Characterizing volatile organic compounds in leachate from Gohagoda municipal solid waste dumpsite, Sri Lanka. Groundwater for Sustainable Development, 2016, 2-3, 1-6.	2.3	16
166	Utilization of Biowaste for Mine Spoil Rehabilitation. Advances in Agronomy, 2016, 138, 97-173.	2.4	34
167	Bio-retention Systems for Storm Water Treatment and Management in Urban Systems. , 2016, , 175-200.		2
168	Biochar for Waste Management and Environmental Sustainability., 2016,, 273-291.		5
169	Modeling of Pb(II) adsorption by a fixed-bed column. Bioremediation Journal, 2016, 20, 194-208.	1.0	10
170	Interface interactions between insecticide carbofuran and tea waste biochars produced at different pyrolysis temperatures. Chemical Speciation and Bioavailability, 2016, 28, 110-118.	2.0	39
171	Sorption Process of Date Palm Biochar for Aqueous Cd (II) Removal: Efficiency and Mechanisms. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	63
172	Phytoremediation of Shooting Range Soils. , 2016, , 469-488.		7
173	Perchlorate mobilization of metals in serpentine soils. Applied Geochemistry, 2016, 74, 203-209.	1.4	9
174	lodine in commercial edible iodized salts and assessment of iodine exposure in Sri Lanka. Archives of Public Health, 2016, 74, 21.	1.0	8
175	Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 2016, 148, 276-291.	4.2	959
176	Adsorption of Cd2+ and Pb2+ onto coconut shell biochar and biochar-mixed soil. Environmental Earth Sciences, 2016, 75, 1.	1.3	59
177	Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar. Microporous and Mesoporous Materials, 2016, 225, 280-288.	2.2	125
178	Steam activation of biochars facilitates kinetics and pH-resilience of sulfamethazine sorption. Journal of Soils and Sediments, 2016, 16, 889-895.	1.5	51
179	Perchlorate as an emerging contaminant in soil, water and food. Chemosphere, 2016, 150, 667-677.	4.2	114
180	Development and optimization of Ti/Cu cathode and Ti/IrO ₂ anode for electrochemical denitrification. Desalination and Water Treatment, 2016, 57, 19025-19037.	1.0	2

#	Article	IF	Citations
181	Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks. Chemosphere, 2016, 150, 781-789.	4.2	169
182	Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal. Chemosphere, 2016, 144, 2516-2521.	4.2	158
183	Heavy Metal Uptake and Tolerance Mechanisms of Serpentine Flora: Implications for Phytoremediation. , 2016, , 439-452.		0
184	Phytoremediation of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Atmospheric Deposition Using Bio-retention Systems., 2016,, 91-115.		0
185	Interaction of arsenic with biochar in soil. Arsenic in the Environment Proceedings, 2016, , 596-598.	0.0	0
186	Geochemical processes for mobilization of arsenic in groundwater. Arsenic in the Environment Proceedings, 2016, , 23-24.	0.0	0
187	Adsorptive Removal of Trichloroethylene in Water by Crop Residue Biochars Pyrolyzed at Contrasting Temperatures: Continuous Fixed-Bed Experiments. Journal of Chemistry, 2015, 2015, 1-6.	0.9	11
188	Fluoride in the environment: sources, distribution and defluoridation. Environmental Chemistry Letters, 2015, 13, 131-147.	8.3	228
189	Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. Journal of Environmental Management, 2015, 151, 443-449.	3.8	92
190	A preliminary study of the role of bacterial–fungal co-inoculation on heavy metal phytotoxicity in serpentine soil. Australian Journal of Botany, 2015, 63, 261.	0.3	21
191	Leachate plume delineation and lithologic profiling using surface resistivity in an open municipal solid waste dumpsite, Sri Lanka. Environmental Technology (United Kingdom), 2015, 36, 2936-2943.	1.2	8
192	Phytoremediation in Constructed Wetlands. , 2015, , 243-263.		21
193	Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. Journal of Hazardous Materials, 2015, 290, 43-50.	6.5	299
194	The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environmental Geochemistry and Health, 2015, 37, 931-942.	1.8	97
195	A Novel Microbial Biofilm for Bioremoval of Nickel from Aqueous Media. Bioremediation Journal, 2015, 19, 239-248.	1.0	3
196	Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. Journal of Analytical and Applied Pyrolysis, 2015, 115, 392-400.	2.6	230
197	Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. Journal of Soils and Sediments, 2015, 15, 126-138.	1.5	140
198	Acid-activated biochar increased sulfamethazine retention in soils. Environmental Science and Pollution Research, 2015, 22, 2175-2186.	2.7	107

#	Article	IF	CITATIONS
199	Inhibitory Effect of Veterinary Antibiotics on Denitrification in Groundwater: A Microcosm Approach. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	42
200	Developed fungal–bacterial biofilms as a novel tool for bioremoval of hexavelant chromium from wastewater. Chemistry and Ecology, 2014, 30, 418-427.	0.6	27
201	Natural and synthesised iron-rich amendments for As and Pb immobilisation in agricultural soil. Chemistry and Ecology, 2014, 30, 267-279.	0.6	30
202	Production and use of biochar from buffaloâ€weed (<i>Ambrosia trifida</i> L.) for trichloroethylene removal from water. Journal of Chemical Technology and Biotechnology, 2014, 89, 150-157.	1.6	89
203	Adsorption of Cd(II) and Pb(II) onto Humic Acid–Treated Coconut (<i>Cocos nucifera</i>) Husk. Journal of Hazardous, Toxic, and Radioactive Waste, 2014, 18, .	1.2	16
204	Effects of soil type and fertilizer on As speciation in rice paddy contaminated with As-containing pesticide. Environmental Earth Sciences, 2014, 71, 837-847.	1.3	20
205	Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 2014, 99, 19-33.	4.2	3,175
206	Organic-coated nanoparticulate zero valent iron for remediation of chemical oxygen demand (COD) and dissolved metals from tropical landfill leachate. Environmental Science and Pollution Research, 2014, 21, 7075-7087.	2.7	20
207	Fate and transport of pollutants through a municipal solid waste landfill leachate in Sri Lanka. Environmental Earth Sciences, 2014, 72, 1707.	1.3	51
208	Metal release from serpentine soils in Sri Lanka. Environmental Monitoring and Assessment, 2014, 186, 3415-3429.	1.3	67
209	Surface complexation of fluoride at the activated nano-gibbsite water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462, 124-130.	2.3	28
210	Assessment of nitrate-N contamination in the Chunnakam aquifer system, Jaffna Peninsula, Sri Lanka. SpringerPlus, 2014, 3, 271.	1.2	18
211	Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar. Journal of Environmental Management, 2014, 141, 95-103.	3.8	145
212	Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource Technology, 2014, 166, 303-308.	4.8	279
213	Invasive plant-derived biochar inhibits sulfamethazine uptake by lettuce in soil. Chemosphere, 2014, 111, 500-504.	4.2	116
214	Design and robust scheduling of nano-satellite swarm for synthetic aperture radar applications. , 2014, , .		0
215	Management of Municipal Solid Waste Landfill Leachate: A Global Environmental Issue. , 2014, , 263-288.		8
216	Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresource Technology, 2013, 143, 615-622.	4.8	319

#	Article	IF	Citations
217	Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils. Journal of Colloid and Interface Science, 2013, 406, 217-224.	5.0	110
218	Role of chelating agents on release kinetics of metals and their uptake by maize from chromated copper arsenate-contaminated soil. Environmental Technology (United Kingdom), 2013, 34, 747-755.	1.2	55
219	Toxicity of synthetic chelators and metal availability in poultry manure amended Cd, Pb and As contaminated agricultural soil. Journal of Hazardous Materials, 2013, 262, 1022-1030.	6.5	62
220	Cr(VI) Formation Related to Cr(III)-Muscovite and Birnessite Interactions in Ultramafic Environments. Environmental Science &	4.6	86
221	Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environmental Chemistry Letters, 2012, 10, 217-224.	8.3	156
222	Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma, 2012, 189-190, 1-9.	2.3	74
223	Adsorptive removal of cadmium by natural red earth: equilibrium and kinetic studies. Environmental Technology (United Kingdom), 2012, 33, 597-606.	1.2	13
224	Surface complexation of nickel on iron and aluminum oxides: A comparative study with single and dual site clays. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 405, 79-87.	2.3	23
225	Characterization of Aqueous Pb(II) and Cd(II) Biosorption on Native and Chemically ModifiedAlstonia macrophyllaSaw Dust. Bioremediation Journal, 2012, 16, 113-124.	1.0	11
226	The Effects of the 2004 Tsunami on a Coastal Aquifer in Sri Lanka. Ground Water, 2012, 50, 704-714.	0.7	18
227	Modeling sorption of fluoride on to iron rich laterite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 398, 69-75.	2.3	38
228	Fabrication of succinic acid-γ-Fe2O3 nano core–shells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 403, 96-102.	2.3	17
229	Laboratory investigations of the effects of geologic heterogeneity on groundwater salinization and flush-out times from a tsunami-like event. Journal of Contaminant Hydrology, 2012, 136-137, 10-24.	1.6	29
230	Bioremediation of Arsenic in Contaminated Terrestrial and Aquatic Environments. Environmental Chemistry for A Sustainable World, 2012, , 475-509.	0.3	3
231	Characterizing Timeâ€Dependent Contact Angles for Sands Hydrophobized with Oleic and Stearic Acids. Vadose Zone Journal, 2012, 11, .	1.3	22
232	Natural Red Earth as a low cost material for arsenic removal: Kinetics and the effect of competing ions. Applied Geochemistry, 2011, 26, 648-654.	1.4	33
233	Natural and Anthropogenic Disasters. , 2010, , .		15
234	Tsunami Impacts and Rehabilitation of Groundwater Supply: Lessons Learned from Eastern Sri Lanka. , 2010, , 82-99.		5

#	Article	IF	CITATION
235	Vulnerability Analysis of the Coastal Sandy Aquifers in the East Coast of Sri Lanka with Recharge Change Consideration. The Open Hydrology Journal, 2010, 4, 173-183.	0.4	4
236	Effect of well cleaning and pumping on groundwater quality of a tsunamiâ€effected coastal aquifer in eastern Sri Lanka. Water Resources Research, 2009, 45, .	1.7	22
237	Role of natural red earth in arsenic removal in drinking water $\hat{a}\in$ comparison with synthetic gibbsite and goethite. Trace Metals and Other Contaminants in the Environment, 2007, , 587-601.	0.1	6
238	Arsenic binding mechanisms on natural red earth: A potential substrate for pollution control. Science of the Total Environment, 2007, 379, 244-248.	3.9	31
239	Mechanistic modeling of arsenic retention on natural red earth in simulated environmental systems. Journal of Colloid and Interface Science, 2006, 294, 265-272.	5.0	69
240	Alloying effect on superconductivity in amorphous lanthanum-based alloys. Physical Review B, 1979, 19, 193-198.	1.1	36