Oleg Lunov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8580602/publications.pdf

Version: 2024-02-01

80 3,939 33 62 papers citations h-index g-index

82 82 82 7187
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective. Acta Biomaterialia, 2022, 146, 10-22.	8.3	10
2	Control of oxidative stress in Jurkat cells as a model of leukemia treatment. Journal of Magnetism and Magnetic Materials, 2021, 523, 167623.	2.3	6
3	Protective role of Gremlinâ€1 in myocardial function. European Journal of Clinical Investigation, 2021, 51, e13539.	3.4	8
4	Expression of Interferons Lambda 3 and 4 Induces Identical Response in Human Liver Cell Lines Depending Exclusively on Canonical Signaling. International Journal of Molecular Sciences, 2021, 22, 2560.	4.1	5
5	Liver Organoids: Recent Developments, Limitations and Potential. Frontiers in Medicine, 2021, 8, 574047.	2.6	50
6	Regulation of NADPH Oxidase-Mediated Superoxide Production by Acetylation and Deacetylation. Frontiers in Physiology, 2021, 12, 693702.	2.8	2
7	Protein Corona Inhibits Endosomal Escape of Functionalized DNA Nanostructures in Living Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 46375-46390.	8.0	20
8	Advanced preclinical models for evaluation of drug-induced liver injury – consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. Journal of Hepatology, 2021, 75, 935-959.	3.7	66
9	Light-induced modulation of the mitochondrial respiratory chain activity: possibilities and limitations. Cellular and Molecular Life Sciences, 2020, 77, 2815-2838.	5.4	29
10	Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. Journal of Controlled Release, 2020, 328, 59-77.	9.9	72
11	Hepatic Tumor Cell Morphology Plasticity under Physical Constraints in 3D Cultures Driven by YAP–mTOR Axis. Pharmaceuticals, 2020, 13, 430.	3.8	5
12	Critical Analysis of Non-Thermal Plasma-Driven Modulation of Immune Cells from Clinical Perspective. International Journal of Molecular Sciences, 2020, 21, 6226.	4.1	17
13	Multifunctional Fe3O4-Au Nanoparticles for the MRI Diagnosis and Potential Treatment of Liver Cancer. Nanomaterials, 2020, 10, 1646.	4.1	27
14	Ferromagnetic glass-coated microwires for cell manipulation. Journal of Magnetism and Magnetic Materials, 2020, 512, 166991.	2.3	8
15	Modulation of Living Cell Behavior with Ultra‣ow Fouling Polymer Brush Interfaces. Macromolecular Bioscience, 2020, 20, e1900351.	4.1	13
16	Iron Oxide Nanoparticle-Induced Autophagic Flux Is Regulated by Interplay between p53-mTOR Axis and Bcl-2 Signaling in Hepatic Cells. Cells, 2020, 9, 1015.	4.1	25
17	Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis. Nano Convergence, 2020, 7, 17.	12.1	19
18	Preliminary Study of Ge-DLC Nanocomposite Biomaterials Prepared by Laser Codeposition. Nanomaterials, 2019, 9, 451.	4.1	9

#	Article	IF	CITATIONS
19	Remote Actuation of Apoptosis in Liver Cancer Cells via Magneto-Mechanical Modulation of Iron Oxide Nanoparticles. Cancers, 2019, 11, 1873.	3.7	40
20	A Critical Review on Selected External Physical Cues and Modulation of Cell Behavior: Magnetic Nanoparticles, Non-thermal Plasma and Lasers. Journal of Functional Biomaterials, 2019, 10, 2.	4.4	16
21	Targeting the mTOR Signaling Pathway Utilizing Nanoparticles: A Critical Overview. Cancers, 2019, 11, 82.	3.7	34
22	Non-Thermal Plasma, as a New Physicochemical Source, to Induce Redox Imbalance and Subsequent Cell Death in Liver Cancer Cell Lines. Cellular Physiology and Biochemistry, 2019, 52, 119-140.	1.6	33
23	Laser irradiation induces mitochondrial dysfunction in hepatic cells. , 2019, , .		1
24	Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation. Biomedical Optics Express, 2018, 9, 1283.	2.9	21
25	Chemically different non-thermal plasmas target distinct cell death pathways. Scientific Reports, 2017, 7, 600.	3.3	36
26	Extracellular Matrix Hydrogel Derived from Human Umbilical Cord as a Scaffold for Neural Tissue Repair and Its Comparison with Extracellular Matrix from Porcine Tissues. Tissue Engineering - Part C: Methods, 2017, 23, 333-345.	2.1	73
27	Non-thermal air plasma promotes the healing of acute skin wounds in rats. Scientific Reports, 2017, 7, 45183.	3.3	90
28	Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Scientific Reports, 2017, 7, 16049.	3.3	38
29	Amino-functionalized nanoparticles as a platform for mTOR activity modulation in hepatocellular carcinoma Huh7 cell line. Journal of Hepatology, 2017, 66, S645-S646.	3.7	1
30	The use of pulsed magnetic fields to increase the uptake of iron oxide nanoparticles by living cells. Applied Physics Letters, 2017, 111, .	3.3	19
31	Plasma will…. British Journal of Dermatology, 2016, 174, 486-487.	1.5	1
32	How a High-Gradient Magnetic Field Could Affect Cell Life. Scientific Reports, 2016, 6, 37407.	3.3	140
33	Living cells response to laser light and low-temperature plasma. , 2016, , .		O
34	Modulation of collective cell behaviour by geometrical constraints. Integrative Biology (United) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 14
35	Control of Hepatic Cells Growth by Topologically Modulated Substrates. Journal of Hepatology, 2016, 64, S348-S349.	3.7	O
36	Effects of high-gradient magnetic fields on living cell machinery. Journal Physics D: Applied Physics, 2016, 49, 493003.	2.8	49

#	Article	IF	Citations
37	Towards the understanding of non-thermal air plasma action: effects on bacteria and fibroblasts. RSC Advances, 2016, 6, 25286-25292.	3.6	13
38	The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma. Biomaterials, 2016, 82, 71-83.	11.4	124
39	An effective strategy of magnetic stem cell delivery for spinal cord injury therapy. Nanoscale, 2015, 7, 3954-3958.	5.6	89
40	Magnetic control of living cell machinery. , 2015, , .		0
41	Non-thermal plasma mills bacteria: Scanning electron microscopy observations. Applied Physics Letters, 2015, 106, .	3.3	36
42	Down-regulation of adipogenesis of mesenchymal stem cells by oscillating high-gradient magnetic fields and mechanical vibration. Applied Physics Letters, 2014, 105, .	3.3	31
43	Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations. Scientific Reports, 2014, 4, 7129.	3.3	62
44	Gremlin-1 Is an Inhibitor of Macrophage Migration Inhibitory Factor and Attenuates Atherosclerotic Plaque Growth in ApoEâ^'/â^' Mice. Journal of Biological Chemistry, 2013, 288, 31635-31645.	3.4	57
45	Peptide nanofibrils boost retroviral gene transfer and provide a rapid means for concentrating viruses. Nature Nanotechnology, 2013, 8, 130-136.	31.5	125
46	Truncated thioredoxin (Trxâ€80) promotes proâ€inflammatory macrophages of the M1 phenotype and enhances atherosclerosis. Journal of Cellular Physiology, 2013, 228, 1577-1583.	4.1	29
47	Interleukin 21–Induced Granzyme B–Expressing B Cells Infiltrate Tumors and Regulate T Cells. Cancer Research, 2013, 73, 2468-2479.	0.9	277
48	Antiviral Vaccines License T Cell Responses by Suppressing Granzyme B Levels in Human Plasmacytoid Dendritic Cells. Journal of Immunology, 2013, 191, 1144-1153.	0.8	11
49	A Novel Semisynthetic Inhibitor of the FRB Domain of Mammalian Target of Rapamycin Blocks Proliferation and Triggers Apoptosis in Chemoresistant Prostate Cancer Cells. Molecular Pharmacology, 2013, 83, 531-541.	2.3	35
50	Aminoâ€functionalized nanoparticles inhibit mTOR and induce cell cycle arrest and apoptosis in leukemia cells. FASEB Journal, 2013, 27, 575.7.	0.5	1
51	Aminoâ€functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. FASEB Journal, 2013, 27, 575.6.	0.5	2
52	Plasmin as a proinflammatory cell activator. Journal of Leukocyte Biology, 2012, 92, 509-519.	3.3	175
53	The Bispecific SDF1-GPVI Fusion Protein Preserves Myocardial Function After Transient Ischemia in Mice. Circulation, 2012, 125, 685-696.	1.6	73
54	Thioredoxin-1 Promotes Anti-Inflammatory Macrophages of the M2 Phenotype and Antagonizes Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1445-1452.	2.4	93

#	Article	IF	CITATIONS
55	Human B cells differentiate into granzyme Bâ€secreting cytotoxic B lymphocytes upon incomplete Tâ€cell help. Immunology and Cell Biology, 2012, 90, 457-467.	2.3	82
56	Plasmin as a proinflammatory cell activator. , 2012, 92, 509.		1
57	Differential uptake of functionalized polystyrene nanoparticles by human macrophages and monocytic cells. FASEB Journal, 2012, 26, 580.9.	0.5	0
58	Modeling receptorâ€mediated uptake of polymerâ€functionalized iron oxide nanoparticles by macrophages. FASEB Journal, 2012, 26, 773.4.	0.5	0
59	Interleukin-21-Induced Granzyme B-Expressing B Lymphocytes Infiltrate Tumors and Regulate T Cells. Blood, 2012, 120, 3278-3278.	1.4	0
60	Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line. ACS Nano, 2011, 5, 1657-1669.	14.6	516
61	Amino-Functionalized Polystyrene Nanoparticles Activate the NLRP3 Inflammasome in Human Macrophages. ACS Nano, 2011, 5, 9648-9657.	14.6	211
62	Nanomechanics of magnetically driven cellular endocytosis. Applied Physics Letters, 2011, 99, .	3.3	41
63	Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials, 2011, 32, 547-555.	11.4	147
64	Granzyme B produced by human plasmacytoid dendritic cells suppresses T-cell expansion. Blood, 2010, 115, 1156-1165.	1.4	150
65	The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials, 2010, 31, 5063-5071.	11.4	140
66	CD5 ⁺ B cells from individuals with systemic lupus erythematosus express granzyme B. European Journal of Immunology, 2010, 40, 2060-2069.	2.9	51
67	Surface plasmon resonance analysis of nuclear factor-l® protein interactions with the sesquiterpene lactone helenalin. Analytical Biochemistry, 2010, 401, 30-37.	2.4	27
68	Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials, 2010, 31, 9015-9022.	11.4	173
69	Thermal Destruction on the Nanoscale: Cell Membrane Hyperthermia with Functionalized Magnetic Nanoparticles. , 2010 , , .		4
70	Model for Hyperthermia with Arrays of Magnetic Nanoparticles: Spatial and Time Temperature Distributions in Tumor. Journal of Nanoscience and Nanotechnology, 2010, 10, 690-695.	0.9	6
71	Tirucallic Acids Are Novel Pleckstrin Homology Domain-Dependent Akt Inhibitors Inducing Apoptosis in Prostate Cancer Cells. Molecular Pharmacology, 2010, 77, 378-387.	2.3	65
72	Interleukin 21 can induce granzyme Bâ€secreting cytotoxic B lymphocytes. FASEB Journal, 2010, 24, lb506.	0.5	0

OLEG LUNOV

#	Article	IF	CITATIONS
73	Incompletely activated CD4+ T cells induce granzyme B+ regulatory B cells in an interleukin 21â€dependent manner. FASEB Journal, 2010, 24, lb507.	0.5	O
74	A role for câ€Jun Nâ€ŧerminal kinases in apoptosis triggered in human macrophages by carboxydextranâ€coated superparamagnetic iron oxide nanoparticles. FASEB Journal, 2010, 24, 520.3.	0.5	0
75	Incompletely Activated CD4+ T Cells Induce Granzyme B+ Regulatory B Cells In An Interleukin 21-Dependent Manner. Blood, 2010, 116, 3905-3905.	1.4	O
76	Targeting NF-κB with a Natural Triterpenoid Alleviates Skin Inflammation in a Mouse Model of Psoriasis. Journal of Immunology, 2009, 183, 4755-4763.	0.8	80
77	Magnetic Heating by Tunable Arrays of Nanoparticles in Cancer Therapy. Acta Physica Polonica A, 2009, 115, 413-417.	0.5	8
78	Granzyme B Produced by Human Plasmacytoid Dendritic Cells Suppresses T Cell Expansion Blood, 2009, 114, 2674-2674.	1.4	0
79	CD40 Ligand Determines Whether Interleukin 21 Induces Differentiation of Human B Cells Into Plasma Cells or Into Granzyme B-Secreting Cytotoxic Cells Blood, 2009, 114, 2675-2675.	1.4	0
80	A model for magnetic bead microrheometry. Journal of Magnetism and Magnetic Materials, 2007, 311, 162-165.	2.3	4