

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8580398/publications.pdf Version: 2024-02-01

Ιτινι Υλινι

#	Article	IF	CITATIONS
1	Exosomeâ€like nanoparticles from Mulberry bark prevent DSSâ€induced colitis via the AhR/COPS8 pathway. EMBO Reports, 2022, 23, e53365.	4.5	56
2	Garlic exosome-like nanoparticles reverse high-fat diet induced obesity via the gut/brain axis. Theranostics, 2022, 12, 1220-1246.	10.0	44
3	Ginger nanoparticles mediated induction of Foxa2 prevents high-fat diet-induced insulin resistance. Theranostics, 2022, 12, 1388-1403.	10.0	23
4	The induction of peripheral trained immunity in the pancreas incites anti-tumor activity to control pancreatic cancer progression. Nature Communications, 2022, 13, 759.	12.8	30
5	Alcohol-driven metabolic reprogramming promotes development of RORÎ ³ t-deficient thymic lymphoma. Oncogene, 2022, 41, 2287-2302.	5.9	2
6	Restoring Oat Nanoparticles Mediated Brain Memory Function of Mice Fed Alcohol by Sorting Inflammatory Dectinâ€1 Complex Into Microglial Exosomes. Small, 2022, 18, e2105385.	10.0	19
7	Perioperative systemic immunophenotype following irreversible electroporation (IRE) predicts recurrence American Journal of Cancer Research, 2022, 12, 165-175.	1.4	0
8	Differential metabolic requirement governed by transcription factor c-Maf dictates innate γÎT17 effector functionality in mice and humans. Science Advances, 2022, 8, .	10.3	7
9	Prediction of lung cancer immunotherapy response via machine learning analysis of immune cell lineage and surface markers. Cancer Biomarkers, 2022, 34, 681-692.	1.7	2
10	Dynamic trafficking patterns of IL-17-producing Î ³ δT cells are linked to the recurrence of skin inflammation in psoriasis-like dermatitis. EBioMedicine, 2022, 82, 104136.	6.1	14
11	Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis. Gut, 2021, 70, 1495-1506.	12.1	77
12	miR-375 prevents high-fat diet-induced insulin resistance and obesity by targeting the aryl hydrocarbon receptor and bacterial tryptophanase (<i>tnaA</i>) gene. Theranostics, 2021, 11, 4061-4077.	10.0	36
13	Absence of <scp>CCR2</scp> reduces spontaneous intestinal tumorigenesis in the <scp>Apc^{Min}</scp> ^{/+} mouse model. International Journal of Cancer, 2021, 148, 2594-2607.	5.1	7
14	Antitumor $\hat{I}^{3}\hat{I}^{\prime}$ T cells need oxygen to function. Nature Immunology, 2021, 22, 268-269.	14.5	7
15	Exosome-mediated delivery of RNA and DNA for gene therapy. Cancer Letters, 2021, 505, 58-72.	7.2	64
16	Lemon exosome-like nanoparticles enhance stress survival of gut bacteria by RNase P-mediated specific tRNA decay. IScience, 2021, 24, 102511.	4.1	34
17	Evaluation of disease staging and chemotherapeutic response in non-small cell lung cancer from patient tumor-derived metabolomic data. Lung Cancer, 2021, 156, 20-30.	2.0	25
18	Targeted Oral Delivery of Paclitaxel Using Colostrum-Derived Exosomes. Cancers, 2021, 13, 3700.	3.7	49

#	Article	IF	CITATIONS
19	Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metabolism, 2021, 33, 2040-2058.e10.	16.2	200
20	Integrin CD11b Negatively Regulates B Cell Receptor Signaling to Shape Humoral Response during Immunization and Autoimmunity. Journal of Immunology, 2021, 207, 1785-1797.	0.8	2
21	Co-modification with MSC membrane and PDA prevents Fe3O4-induced pulmonary toxicity in mice via AMPK-ULK1 axis. Toxicology Letters, 2021, 351, 145-154.	0.8	2
22	High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nature Communications, 2021, 12, 213.	12.8	112
23	Aged neutrophils form mitochondria-dependent vital NETs to promote breast cancer lung metastasis. , 2021, 9, e002875.		49
24	Lactate supports a metabolic-epigenetic link in macrophage polarization. Science Advances, 2021, 7, eabi8602.	10.3	70
25	Tumor Microenvironment following Gemcitabine Treatment Favors Differentiation of Immunosuppressive Ly6Chigh Myeloid Cells. Journal of Immunology, 2020, 204, 212-223.	0.8	42
26	Could the Induction of Trained Immunity by β-Glucan Serve as a Defense Against COVID-19?. Frontiers in Immunology, 2020, 11, 1782.	4.8	64
27	Tumor-derived HMGB1 induces CD62Ldim neutrophil polarization and promotes lung metastasis in triple-negative breast cancer. Oncogenesis, 2020, 9, 82.	4.9	46
28	<p>Polydopamine Nanoparticles Camouflaged by Stem Cell Membranes for Synergistic Chemo-Photothermal Therapy of Malignant Bone Tumors</p> . International Journal of Nanomedicine, 2020, Volume 15, 10183-10197.	6.7	36
29	Exosomal PD-L1: Roles in Tumor Progression and Immunotherapy. Trends in Cancer, 2020, 6, 550-558.	7.4	94
30	⁸⁹ Zr-Labeled Anti-PD-L1 Antibody Fragment for Evaluating <i>In Vivo</i> PD-L1 Levels in Melanoma Mouse Model. Cancer Biotherapy and Radiopharmaceuticals, 2020, 35, 549-557.	1.0	20
31	Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer. Journal of Clinical Investigation, 2020, 130, 2081-2096.	8.2	108
32	Yeast-Derived β-Glucan in Cancer: Novel Uses of a Traditional Therapeutic. International Journal of Molecular Sciences, 2019, 20, 3618.	4.1	80
33	Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas gingivalis. IScience, 2019, 21, 308-327.	4.1	98
34	Tumor Microenvironment Modulates Immunological Outcomes of Myeloid Cells with mTORC1 Disruption. Journal of Immunology, 2019, 202, 1623-1634.	0.8	8
35	The Role of Membrane Bound Complement Regulatory Proteins in Tumor Development and Cancer Immunotherapy. Frontiers in Immunology, 2019, 10, 1074.	4.8	89
36	Differential Roles of the mTOR-STAT3 Signaling in Dermal γδT Cell Effector Function in Skin Inflammation. Cell Reports, 2019, 27, 3034-3048.e5.	6.4	46

#	Article	IF	CITATIONS
37	Novel Insight Into the Molecular and Metabolic Mechanisms Orchestrating IL-17 Production in γδT Cells. Frontiers in Immunology, 2019, 10, 2828.	4.8	7
38	A Critical Role of the IL-1β–IL-1R Signaling Pathway in Skin Inflammation and Psoriasis Pathogenesis. Journal of Investigative Dermatology, 2019, 139, 146-156.	0.7	152
39	Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota. Cell Host and Microbe, 2018, 24, 637-652.e8.	11.0	517
40	Blood exosomes regulate the tissue distribution of grapefruit-derived nanovector via CD36 and IGFR1 pathways. Theranostics, 2018, 8, 4912-4924.	10.0	53
41	A combined approach with gene-wise normalization improves the analysis of RNA-seq data in human breast cancer subtypes. PLoS ONE, 2018, 13, e0201813.	2.5	6
42	Transcription Factor STAT3 Serves as a Negative Regulator Controlling IgE Class Switching in Mice. ImmunoHorizons, 2018, 2, 349-362.	1.8	12
43	Tumor-infiltrating CD39 ⁺ γδ Tregs are novel immunosuppressive T cells in human colorectal cancer. Oncolmmunology, 2017, 6, e1277305.	4.6	77
44	MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nature Communications, 2017, 8, 14448.	12.8	350
45	Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase. Molecular Therapy, 2017, 25, 1641-1654.	8.2	250
46	Innate γÎT17 cells play a protective role in DSS-induced colitis via recruitment of Gr-1 ⁺ CD11b ⁺ myeloid suppressor cells. Oncolmmunology, 2017, 6, e1313369.	4.6	20
47	Microbiota-activated CD103+ DCs stemming from microbiota adaptation specifically drive γÎT17 proliferation and activation. Microbiome, 2017, 5, 46.	11.1	55
48	Polysaccharides from Epimedium koreanum Nakai with immunomodulatory activity and inhibitory effect on tumor growth in LLC-bearing mice. Journal of Ethnopharmacology, 2017, 207, 8-18.	4.1	40
49	Î ³ δT Cells: Unexpected Regulators of Cancer Development and Progression. Trends in Cancer, 2017, 3, 561-570.	7.4	94
50	To b(ortezomib) or not to be: the stroma's the thing. Journal of Pathology, 2016, 240, 123-125.	4.5	1
51	STAT3 Signaling in B Cells Is Critical for Germinal Center Maintenance and Contributes to the Pathogenesis of Murine Models of Lupus. Journal of Immunology, 2016, 196, 4477-4486.	0.8	69
52	Characterization of the anti-inflammation mechanism for the AO herbal extract. Experimental and Molecular Pathology, 2016, 101, 341-345.	2.1	5
53	Yeast-Derived Particulate Î ² -Glucan Treatment Subverts the Suppression of Myeloid-Derived Suppressor Cells (MDSC) by Inducing Polymorphonuclear MDSC Apoptosis and Monocytic MDSC Differentiation to APC in Cancer. Journal of Immunology, 2016, 196, 2167-2180.	0.8	86
54	Identification of inflammatory factor TNFα inhibitor from medicinal herbs. Experimental and Molecular Pathology, 2016, 100, 307-311.	2.1	10

#	Article	IF	CITATIONS
55	Grapefruit-derived Nanovectors Delivering Therapeutic miR17 Through an Intranasal Route Inhibit Brain Tumor Progression. Molecular Therapy, 2016, 24, 96-105.	8.2	141
56	MLLT11/AF1q boosts oncogenic STAT3 activity through <i>Src</i> -PDGFR tyrosine kinase signaling. Oncotarget, 2016, 7, 43960-43973.	1.8	34
57	Immunotherapy in human colorectal cancer: Challenges and prospective. World Journal of Gastroenterology, 2016, 22, 6362.	3.3	41
58	Gingerâ€derived nanoparticles protect against alcoholâ€induced liver damage. Journal of Extracellular Vesicles, 2015, 4, 28713.	12.2	277
59	Enterobacteria-secreted particles induce production of exosome-like S1P-containing particles by intestinal epithelium to drive Th17-mediated tumorigenesis. Nature Communications, 2015, 6, 6956.	12.8	67
60	Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites. Cancer Research, 2015, 75, 2520-2529.	0.9	216
61	<i>Ex vivo</i> expanded human circulating Vδ1 γÎT cells exhibit favorable therapeutic potential for colon cancer. Oncolmmunology, 2015, 4, e992749.	4.6	75
62	Dectin-1 Activation by a Natural Product β-Glucan Converts Immunosuppressive Macrophages into an M1-like Phenotype. Journal of Immunology, 2015, 195, 5055-5065.	0.8	129
63	Innate γÎT17 cells convert cancer-elicited inflammation into immunosuppression through myeloid-derived suppressor cells. OncoImmunology, 2014, 3, e953423.	4.6	20
64	Human polymorphonuclear neutrophils specifically recognize and kill cancerous cells. Oncolmmunology, 2014, 3, e950163.	4.6	68
65	Targeted Noninvasive Imaging of EGFR-Expressing Orthotopic Pancreatic Cancer Using Multispectral Optoacoustic Tomography. Cancer Research, 2014, 74, 6271-6279.	0.9	60
66	γÎT17 Cells Promote the Accumulation and Expansion of Myeloid-Derived Suppressor Cells in Human Colorectal Cancer. Immunity, 2014, 40, 785-800.	14.3	489
67	Targeted Drug Delivery to Intestinal Macrophages by Bioactive Nanovesicles Released from Grapefruit. Molecular Therapy, 2014, 22, 522-534.	8.2	307
68	Differential developmental requirement and peripheral regulation for dermal Vγ4 and Vγ6T17 cells in health and inflammation. Nature Communications, 2014, 5, 3986.	12.8	137
69	βâ€Glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloidâ€derived suppressor cells. European Journal of Immunology, 2013, 43, 1220-1230.	2.9	108
70	Hampering Immune Suppressors. Cancer Journal (Sudbury, Mass), 2013, 19, 490-501.	2.0	56
71	Exosome-like Nanoparticles from Intestinal Mucosal Cells Carry Prostaglandin E2 and Suppress Activation of Liver NKT Cells. Journal of Immunology, 2013, 190, 3579-3589.	0.8	82
72	Integrin CD11b negatively regulates BCR signalling to maintain autoreactive B cell tolerance. Nature Communications, 2013, 4, 2813.	12.8	56

#	Article	IF	CITATIONS
73	Intestinal mucus-derived nanoparticle-mediated activation of Wnt/β-catenin signaling plays a role in induction of liver natural killer T cell anergy in mice. Hepatology, 2013, 57, 1250-1261.	7.3	24
74	Opposing Roles for Complement Component C5a in Tumor Progression and the Tumor Microenvironment. Journal of Immunology, 2012, 189, 2985-2994.	0.8	77
75	Pivotal Role of Dermal IL-17-Producing $\hat{I}^{\hat{J}}$ T Cells in Skin Inflammation. Immunity, 2011, 35, 596-610.	14.3	887
76	Stable isotope resolved metabolomics of lung cancer in a SCID mouse model. Metabolomics, 2011, 7, 257-269.	3.0	98
77	Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived β-glucans. Blood, 2011, 117, 6825-6836.	1.4	192
78	Orally Administered Particulate β-Glucan Modulates Tumor-Capturing Dendritic Cells and Improves Antitumor T-Cell Responses in Cancer. Clinical Cancer Research, 2010, 16, 5153-5164.	7.0	93
79	Plasmacytoid Dendritic Cells Regulate Autoreactive B Cell Activation via Soluble Factors and in a Cell-to-Cell Contact Manner. Journal of Immunology, 2009, 183, 7140-7149.	0.8	47
80	Therapeutic potential of various β-glucan sources in conjunction with anti-tumor monoclonal antibody in cancer therapy. Cancer Biology and Therapy, 2009, 8, 218-225.	3.4	59
81	Combined yeast-derived β-glucan with anti-tumor monoclonal antibody for cancer immunotherapy. Experimental and Molecular Pathology, 2009, 86, 208-214.	2.1	72
82	Effect of Yeast-derived β-glucan in Conjunction With Bevacizumab for the Treatment of Human Lung Adenocarcinoma in Subcutaneous and Orthotopic Xenograft Models. Journal of Immunotherapy, 2009, 32, 703-712.	2.4	30
83	Yeast-Derived β-Glucan in Combination with Anti-Tumor Monoclonal Antibody Therapy in Cancer. Recent Patents on Anti-Cancer Drug Discovery, 2009, 4, 101-109.	1.6	12
84	Mobilization of Hematopoietic Progenitor Cells by Yeast-Derived <i>β</i> -Glucan Requires Activation of Matrix Metalloproteinase-9. Stem Cells, 2008, 26, 1231-1240.	3.2	31
85	Yeast-Derived β-Glucan Augments the Therapeutic Efficacy Mediated by Anti–Vascular Endothelial Growth Factor Monoclonal Antibody in Human Carcinoma Xenograft Models. Clinical Cancer Research, 2008, 14, 1239-1247.	7.0	48
86	The Role of Membrane Complement Regulatory Proteins in Cancer Immunotherapy. Advances in Experimental Medicine and Biology, 2008, , 152-167.	1.6	22
87	The role of membrane complement regulatory proteins in cancer immunotherapy. Advances in Experimental Medicine and Biology, 2008, 632, 159-74.	1.6	40
88	Combined Yeast β-Glucan and Antitumor Monoclonal Antibody Therapy Requires C5a-Mediated Neutrophil Chemotaxis via Regulation of Decay-Accelerating Factor CD55. Cancer Research, 2007, 67, 7421-7430.	0.9	45
89	Yeast glucan particles activate murine resident macrophages to secrete proinflammatory cytokines via MyD88- and Syk kinase-dependent pathways. Clinical Immunology, 2007, 124, 170-181.	3.2	62
90	A Novel Role of Complement in Mobilization: Immunodeficient Mice Are Poor Granulocyte-Colony Stimulating Factor Mobilizers Because They Lack Complement-Activating Immunoglobulins. Stem Cells, 2007, 25, 3093-3100.	3.2	58

#	Article	IF	CITATIONS
91	Regulation of autoreactive B cells: checkpoints and activation. Archivum Immunologiae Et Therapiae Experimentalis, 2007, 55, 83-89.	2.3	11
92	β-Glucan enhances complement-mediated hematopoietic recovery after bone marrow injury. Blood, 2006, 107, 835-840.	1.4	50
93	Toll-like receptor engagement stimulates anti-snRNP autoreactive B cells for activation. European Journal of Immunology, 2006, 36, 2013-2024.	2.9	23
94	B Cells Drive Early T Cell Autoimmunity In Vivo prior to Dendritic Cell-Mediated Autoantigen Presentation. Journal of Immunology, 2006, 177, 4481-4487.	0.8	109
95	Yeast β-Glucan Amplifies Phagocyte Killing of iC3b-Opsonized Tumor Cells via Complement Receptor 3-Syk-Phosphatidylinositol 3-Kinase Pathway. Journal of Immunology, 2006, 177, 1661-1669.	0.8	148
96	Targeting antigen to CD19 on B cells efficiently activates T cells. International Immunology, 2005, 17, 869-877.	4.0	29
97	Yeast whole glucan particle (WGP) β-glucan in conjunction with antitumour monoclonal antibodies to treat cancer. Expert Opinion on Biological Therapy, 2005, 5, 691-702.	3.1	74
98	Mechanism by Which Orally Administered β-1,3-Glucans Enhance the Tumoricidal Activity of Antitumor Monoclonal Antibodies in Murine Tumor Models. Journal of Immunology, 2004, 173, 797-806.	0.8	419
99	Beta-glucan functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer Research, 2003, 63, 9023-31.	0.9	121
100	Autoreactive T Cells Revealed in the Normal Repertoire: Escape from Negative Selection and Peripheral Tolerance. Journal of Immunology, 2002, 168, 3188-3194.	0.8	59
101	B and T cell tolerance and autoimmunity in autoantibody transgenic mice. International Immunology, 2002, 14, 963-971.	4.0	32
102	Lupus Autoantibodies: Their Origins, Forms, and Presentation. Immunologic Research, 2001, 24, 131-148.	2.9	14
103	Critical role of Kupffer cell CR3 (CD11b/CD18) in the clearance of IgM-opsonized erythrocytes or soluble β-glucan. Immunopharmacology, 2000, 46, 39-54.	2.0	60
104	Therapeutic intervention with complement and \hat{l}^2 -glucan in cancer. Immunopharmacology, 1999, 42, 61-74.	2.0	238
105	Isolation, identification, and characterization of novel nanovesicles. Oncotarget, 0, 7, 41346-41362.	1.8	23
106	Differential Roles of the mTOR-STAT3 Signaling in Dermal γδT Cell Effector Function in Skin Inflammation. SSRN Electronic Journal, 0, , .	0.4	0