
Sujong Chae

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/857879/publications.pdf Version: 2024-02-01

SUIONC CHAF

#	Article	IF	CITATIONS
1	Crosslinked Polyethyleneimine Gel Polymer Interface to Improve Cycling Stability of RFBs. Energy Material Advances, 2022, 2022, .	11.0	3
2	Effects of Fluorinated Diluents in Localized Highâ€Concentration Electrolytes for Lithium–Oxygen Batteries. Advanced Functional Materials, 2021, 31, 2002927.	14.9	39
3	Rational Design of Electrolytes for Long-Term Cycling of Si Anodes over a Wide Temperature Range. ACS Energy Letters, 2021, 6, 387-394.	17.4	58
4	(Invited) Rational Design of Localized High Concentration Electrolytes to Enable Long-Term Cycling of Si Anodes. ECS Meeting Abstracts, 2021, MA2021-01, 120-120.	0.0	0
5	A Micrometerâ€Sized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon. Advanced Materials, 2021, 33, e2103095.	21.0	99
6	Stable Solid Electrolyte Interphase Layer Formed by Electrochemical Pretreatment of Gel Polymer Coating on Li Metal Anode for Lithium–Oxygen Batteries. ACS Energy Letters, 2021, 6, 3321-3331.	17.4	17
7	Achieving Highly Reproducible Results in Graphite-Based Li-Ion Full Coin Cells. ECS Meeting Abstracts, 2021, MA2021-02, 408-408.	0.0	0
8	Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack. Nature Energy, 2021, 6, 1164-1175.	39.5	107
9	Integration of Graphite and Silicon Anodes for the Commercialization of Highâ€Energy Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 110-135.	13.8	460
10	Graphit―undâ€&iliciumâ€Anoden für Lithiumionen―Hochenergiebatterien. Angewandte Chemie, 2020, 132, 112-138.	2.0	23
11	Strategic Pore Architecture for Accommodating Volume Change from High Si Content in Lithiumâ€Ion Battery Anodes. Advanced Energy Materials, 2020, 10, 1903400.	19.5	50
12	Calendering ompatible Macroporous Architecture for Silicon–Graphite Composite toward Highâ€Energy Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2003286.	21.0	111
13	Scalable Synthesis of Hollow β-SiC/Si Anodes <i>via</i> Selective Thermal Oxidation for Lithium-Ion Batteries. ACS Nano, 2020, 14, 11548-11557.	14.6	32
14	Evaluation of the Volumetric Activity of the Air Electrode in a Zinc–Air Battery Using a Nitrogen and Sulfur Co-doped Metal-free Electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 57064-57070.	8.0	6
15	Optimized Electrolyte with High Electrochemical Stability and Oxygen Solubility for Lithium–Oxygen and Lithium–Air Batteries. ACS Energy Letters, 2020, 5, 2182-2190.	17.4	45
16	Gas phase synthesis of amorphous silicon nitride nanoparticles for high-energy LIBs. Energy and Environmental Science, 2020, 13, 1212-1221.	30.8	48
17	An Antiaging Electrolyte Additive for Highâ€Energyâ€Density Lithiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000563.	19.5	50
18	Native Void Space for Maximum Volumetric Capacity in Silicon-Based Anodes. Nano Letters, 2019, 19, 8793-8800.	9.1	36

SUJONG CHAE

#	Article	IF	CITATIONS
19	Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes. Nature Communications, 2019, 10, 475.	12.8	79
20	Fabrication of Lamellar Nanosphere Structure for Effective Stressâ€Management in Largeâ€Volumeâ€Variation Anodes of Highâ€Energy Lithiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1900970.	21.0	52
21	Advances and Prospects of Sulfide Allâ€Solidâ€State Lithium Batteries via Oneâ€toâ€One Comparison with Conventional Liquid Lithium Ion Batteries. Advanced Materials, 2019, 31, e1900376.	21.0	119
22	Robust Pitch on Silicon Nanolayer–Embedded Graphite for Suppressing Undesirable Volume Expansion. Advanced Energy Materials, 2019, 9, 1803121.	19.5	107
23	Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries. Energy and Environmental Science, 2018, 11, 1552-1562.	30.8	154
24	Zinc-Air Batteries: A Ternary Ni46 Co40 Fe14 Nanoalloy-Based Oxygen Electrocatalyst for Highly Efficient Rechargeable Zinc-Air Batteries (Adv. Mater. 46/2018). Advanced Materials, 2018, 30, 1870346.	21.0	1
25	A Ternary Ni ₄₆ Co ₄₀ Fe ₁₄ Nanoalloyâ€Based Oxygen Electrocatalyst for Highly Efficient Rechargeable Zinc–Air Batteries. Advanced Materials, 2018, 30, e1803372.	21.0	73
26	Oneâ€ŧoâ€One Comparison of Graphiteâ€Blended Negative Electrodes Using Silicon Nanolayerâ€Embedded Graphite versus Commercial Benchmarking Materials for Highâ€Energy Lithiumâ€ion Batteries. Advanced Energy Materials, 2017, 7, 1700071.	19.5	100
27	Low-Temperature Carbon Coating of Nanosized Li _{1.015} Al _{0.06} Mn _{1.925} O ₄ and High-Density Electrode for High-Power Li-Ion Batteries. Nano Letters, 2017, 17, 3744-3751.	9.1	45
28	Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nature Communications, 2017, 8, 812.	12.8	274
29	Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries. Joule, 2017, 1, 47-60.	24.0	329
30	Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nature Energy, 2016, 1, .	39.5	563
31	Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries. Energy and Environmental Science, 2016, 9, 1251-1257.	30.8	147
32	Considering Critical Factors of Liâ€rich Cathode and Si Anode Materials for Practical Liâ€ion Cell Applications. Small, 2015, 11, 4058-4073.	10.0	67
33	Metal (Ni, Co)â€Metal Oxides/Graphene Nanocomposites as Multifunctional Electrocatalysts. Advanced Functional Materials, 2015, 25, 5799-5808.	14.9	490
34	Nickelâ€Rich Layered Lithium Transitionâ€Metal Oxide for Highâ€Energy Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 4440-4457.	13.8	1,512
35	Challenges in Accommodating Volume Change of Si Anodes for Liâ€lon Batteries. ChemElectroChem, 2015, 2, 1645-1651.	3.4	204
36	Hollow Silicon Nanostructures via the Kirkendall Effect. Nano Letters, 2015, 15, 6914-6918.	9.1	67

SUJONG CHAE

#	Article	IF	CITATIONS
37	Novel design of ultra-fast Si anodes for Li-ion batteries: crystalline Si@amorphous Si encapsulating hard carbon. Nanoscale, 2014, 6, 10604-10610.	5.6	40
38	Elastic <i>a</i> -Silicon Nanoparticle Backboned Graphene Hybrid as a Self-Compacting Anode for High-Rate Lithium Ion Batteries. ACS Nano, 2014, 8, 8591-8599.	14.6	180
39	Flexible High-Energy Li-Ion Batteries with Fast-Charging Capability. Nano Letters, 2014, 14, 4083-4089.	9.1	122