Xue Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/857729/publications.pdf

Version: 2024-02-01

414414 471509 1,041 36 17 32 citations h-index g-index papers 1556 37 37 37 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Role of polydopamine's redox-activity on its pro-oxidant, radical-scavenging, and antimicrobial activities. Acta Biomaterialia, 2019, 88, 181-196.	8.3	137
2	A PEG-Lysozyme hydrogel harvests multiple functions as a fit-to-shape tissue sealant for internal-use of body. Biomaterials, 2019, 192, 392-404.	11.4	89
3	Bio-inspired redox-cycling antimicrobial film for sustained generation of reactive oxygen species. Biomaterials, 2018, 162, 109-122.	11.4	72
4	A novel composite coupled hardness with flexiblenessâ€"polylactic acid toughen with thermoplastic polyurethane. Journal of Applied Polymer Science, 2011, 121, 855-861.	2.6	67
5	Redox-Channeling Polydopamine-Ferrocene (PDA-Fc) Coating To Confer Context-Dependent and Photothermal Antimicrobial Activities. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8915-8928.	8.0	67
6	Programmable Electrofabrication of Porous Janus Films with Tunable Janus Balance for Anisotropic Cell Guidance and Tissue Regeneration. Advanced Functional Materials, 2019, 29, 1900065.	14.9	58
7	Biospecific Selfâ€Assembly of a Nanoparticle Coating for Targeted and Stimuliâ€Responsive Drug Delivery. Advanced Functional Materials, 2015, 25, 1404-1417.	14.9	50
8	Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication, 2019, 11, 032002.	7.1	43
9	Musselâ€Inspired, Surfaceâ€Attachable Initiator for Grafting of Antimicrobial and Antifouling Hydrogels. Macromolecular Rapid Communications, 2019, 40, e1900268.	3.9	42
10	A reduced polydopamine nanoparticle-coupled sprayable PEG hydrogel adhesive with anti-infection activity for rapid wound sealing. Biomaterials Science, 2020, 8, 6946-6956.	5 . 4	36
11	Radical Scavenging Activities of Biomimetic Catechol-Chitosan Films. Biomacromolecules, 2018, 19, 3502-3514.	5 . 4	34
12	Electrofabrication of functional materials: Chloramine-based antimicrobial film for infectious wound treatment. Acta Biomaterialia, 2018, 73, 190-203.	8.3	30
13	Enlisting a Traditional Chinese Medicine to tune the gelation kinetics of a bioactive tissue adhesive for fast hemostasis or minimally invasive therapy. Bioactive Materials, 2021, 6, 905-917.	15.6	28
14	Electrical signals triggered controllable formation of calcium-alginate film for wound treatment. Journal of Materials Science: Materials in Medicine, 2017, 28, 146.	3.6	24
15	Novel porous silica granules for instant hemostasis. RSC Advances, 2016, 6, 78930-78935.	3.6	22
16	Lysozyme Amyloid Fibril-Integrated PEG Injectable Hydrogel Adhesive with Improved Antiswelling and Antibacterial Capabilities. Biomacromolecules, 2022, 23, 1376-1391.	5.4	22
17	A red fluorescent turn-on chemosensor for Al ³⁺ based on a dimethoxy triphenylamine benzothiadiazole derivative with aggregation-induced emission. Analytical Methods, 2017, 9, 2689-2695.	2.7	21
18	Template size matched film thickness for effectively in situ surface imprinting: a model study of glycoprotein imprints. RSC Advances, 2015, 5, 47010-47021.	3.6	18

#	Article	IF	CITATIONS
19	Synthetic Mimics of Antimicrobial Peptides for the Targeted Therapy of Multidrugâ€Resistant Bacterial Infection. Advanced Healthcare Materials, 2021, 10, e2101244.	7.6	17
20	Synthesis, two-photon absorption and aggregation-induced emission properties of multi-branched triphenylamine derivatives based on diketopyrrolopyrrole for bioimaging. RSC Advances, 2016, 6, 58434-58442.	3.6	16
21	Coupling PEG-LZM polymer networks with polyphenols yields suturable biohydrogels for tissue patching. Biomaterials Science, 2020, 8, 3334-3347.	5.4	15
22	Electro-assembly of a dynamically adaptive molten fibril state for collagen. Science Advances, 2022, 8, eabl7506.	10.3	15
23	Coupling Self-Assembly Mechanisms to Fabricate Molecularly and Electrically Responsive Films. Biomacromolecules, 2019, 20, 969-978.	5 . 4	14
24	Biofabricated Nanoparticle Coating for Liverâ€Cell Targeting. Advanced Healthcare Materials, 2015, 4, 1972-1981.	7.6	13
25	Pro- and Anti-oxidant Properties of Redox-Active Catechol-Chitosan Films. Frontiers in Chemistry, 2019, 7, 541.	3.6	13
26	Electrical Signal Initiates Kinetic Assembly of Collagen to Construct Optically Transparent and Geometry Customized Artificial Cornea Substitutes. ACS Nano, 2022, 16, 10632-10646.	14.6	13
27	Selective extraction of bioactive glycoprotein in neutral environment through Concanavalin A mediated template immobilization and dopamine surface imprinting. RSC Advances, 2016, 6, 86455-86463.	3.6	12
28	A novel corneal adhesive based on functionally coupled PEG-lysozyme hydrogel for wound closure after surgical eye surgery. Chinese Chemical Letters, 2022, 33, 4321-4325.	9.0	11
29	Self-assembly of dual drug-delivery coating for synergistic bone regeneration. Journal of Materials Chemistry B, 2016, 4, 4901-4912.	5.8	10
30	Preparation, rheological properties and primary cytocompatibility of TPU/PLA blends as biomedical materials. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 211-218.	1.0	7
31	Effect of the solvent on improving the recognition properties of surface molecularly imprinted polymers for precise separation of erythromycin. RSC Advances, 2015, 5, 83619-83627.	3.6	6
32	Efficient Capture and T2 Magnetic Resonance Assay of <i>Candida albicans</i> with Inorganic Nanoparticles: Role of Nanoparticle Surface Charge and Fungal Cell Wall. ACS Biomaterials Science and Engineering, 2019, 5, 3270-3278.	5.2	5
33	Tag-Free Site-Specific BMP-2 Immobilization with Long-Acting Bioactivities via a Simple Sugar–Lectin Interaction. ACS Biomaterials Science and Engineering, 2020, 6, 2219-2230.	5.2	4
34	Continuous and controllable electro-fabrication of antimicrobial copper-alginate dressing for infected wounds treatment. Journal of Materials Science: Materials in Medicine, 2021, 32, 143.	3.6	4
35	Engineering a favourable osteogenic microenvironment by heparin mediated hybrid coating assembly and rhBMP-2 loading. RSC Advances, 2017, 7, 11439-11447.	3.6	3
36	Solvent effect modulates the formation of homogeneous polyphenol composite hydrogel with improved transparency and mechanical strength for antibacterial delayed sternal closure film. Journal of Materials Chemistry B, 2022, , .	5.8	2