
Sergei Dzyadevych

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8577180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conductometric Microbiosensors for Environmental Monitoring. Sensors, 2008, 8, 2569-2588.	3.8	189
2	A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples. Biosensors and Bioelectronics, 2005, 21, 273-281.	10.1	180
3	Advances in nanomaterial application in enzyme-based electrochemical biosensors: a review. Nanoscale Advances, 2019, 1, 4560-4577.	4.6	126
4	Amperometric enzyme biosensors: Past, present and future. Irbm, 2008, 29, 171-180.	5.6	122
5	Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Biosensors and Bioelectronics, 2004, 19, 1089-1096.	10.1	119
6	Enzyme biosensors based on ion-selective field-effect transistors. Analytica Chimica Acta, 2006, 568, 248-258.	5.4	117
7	Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film. Biosensors and Bioelectronics, 2015, 74, 830-835.	10.1	110
8	Application of urease conductometric biosensor for heavy-metal ion determination. Sensors and Actuators B: Chemical, 1995, 24, 145-148.	7.8	106
9	Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions. Bioelectrochemistry, 2012, 83, 25-30.	4.6	97
10	Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites. Talanta, 2004, 63, 365-370.	5.5	83
11	Thin-film conductometric biosensors for glucose and urea determination. Biosensors and Bioelectronics, 1994, 9, 217-223.	10.1	81
12	Application of Amperometric Biosensors for Analysis of Ethanol, Glucose, and Lactate in Wine. Journal of Agricultural and Food Chemistry, 2009, 57, 6528-6535.	5.2	79
13	Application of enzyme field-effect transistors for determination of glucose concentrations in blood serum. Biosensors and Bioelectronics, 1999, 14, 283-287.	10.1	76
14	Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors. Analytical and Bioanalytical Chemistry, 2003, 377, 496-506.	3.7	75
15	Electrochemical biosensors based on multienzyme systems: Main groups, advantages and limitations – A review. Analytica Chimica Acta, 2020, 1111, 114-131.	5.4	74
16	Conductometric formaldehyde sensitive biosensor with specifically adapted analytical characteristics. Analytica Chimica Acta, 2001, 445, 47-55.	5.4	70
17	Anticancer drug detection using a highly sensitive molecularly imprinted electrochemical sensor based on an electropolymerized microporous metal organic framework. Talanta, 2015, 138, 71-76.	5.5	69
18	Multibiosensor based on enzyme inhibition analysis for determination of different toxic substances. Talanta. 2001. 55. 919-927.	5.5	61

#	Article	IF	CITATIONS
19	Carbon fibre-based microbiosensors for in vivo measurements of acetylcholine and choline. Biosensors and Bioelectronics, 2005, 21, 87-94.	10.1	58
20	Amperometric biosensor for ethanol detection based on alcohol oxidase immobilised within electrochemically deposited Resydrol film. Materials Science and Engineering C, 2006, 26, 411-414.	7.3	58
21	Conductometric nitrate biosensor based on methyl viologen/Nafion®/nitrate reductase interdigitated electrodes. Talanta, 2006, 69, 450-455.	5.5	57
22	Assessment of the toxicity of methyl parathion and its photodegradation products in water samples using conductometric enzyme biosensors. Analytica Chimica Acta, 2002, 459, 33-41.	5.4	56
23	Conductometric enzyme biosensors based on natural zeolite clinoptilolite for urea determination. Materials Science and Engineering C, 2011, 31, 1490-1497.	7.3	56
24	Development and optimisation of biosensors based on pH-sensitive field effect transistors and cholinesterases for sensitive detection of solanaceous glycoalkaloids. Biosensors and Bioelectronics, 2003, 18, 1047-1053.	10.1	55
25	Early-warning electrochemical biosensor system for environmental monitoring based on enzyme inhibition. Sensors and Actuators B: Chemical, 2005, 105, 81-87.	7.8	54
26	Development of tyrosinase biosensor based on pH-sensitive field-effect transistors for phenols determination in water solutions. Talanta, 2002, 56, 627-634.	5.5	53
27	Impedimetric immunosensor based on SWCNT-COOH modified gold microelectrodes for label-free detection of deep venous thrombosis biomarker. Biosensors and Bioelectronics, 2010, 26, 1278-1282.	10.1	48
28	Development of conductometric biosensor array for simultaneous determination of maltose, lactose, sucrose and glucose. Talanta, 2013, 115, 200-207.	5.5	48
29	A novel urea conductometric biosensor based on zeolite immobilized urease. Talanta, 2011, 85, 1435-1441.	5.5	47
30	A comparative photodegradation studies of methyl parathion by using Lumistox test and conductometric biosensor technique. Materials Science and Engineering C, 2002, 21, 55-60.	7.3	45
31	Alkaline phosphatase conductometric biosensor for heavy-metal ions determination. Irbm, 2008, 29, 136-140.	5.6	44
32	Novel sucrose three-enzyme conductometric biosensor. Materials Science and Engineering C, 2008, 28, 959-964.	7.3	43
33	Conductometric biosensor based on glucose oxidase and beta-galactosidase for specific lactose determination in milk. Materials Science and Engineering C, 2008, 28, 872-875.	7.3	42
34	Potentiometric Biosensors Based on ISFETs and Immobilized Cholinesterases. Electroanalysis, 2004, 16, 1873-1882.	2.9	41
35	Glucose sensitive conductometric biosensor with additional Nafion membrane: reduction of influence of buffer capacity on the sensor response and extension of its dynamic range. Analytica Chimica Acta, 1994, 288, 197-203.	5.4	40
36	Acetylcholinesterase-based conductometric biosensor for determination of aflatoxin B1. Sensors and Actuators B: Chemical, 2013, 188, 999-1003.	7.8	40

#	Article	IF	CITATIONS
37	Development of novel enzyme potentiometric biosensor based on pH-sensitive field-effect transistors for aflatoxin B1 analysis in real samples. Talanta, 2015, 144, 1079-1084.	5.5	40
38	Amperometric biosensor for lactate analysis in wine and must during fermentation. Materials Science and Engineering C, 2008, 28, 943-948.	7.3	37
39	Development of a conductometric nitrate biosensor based on Methyl viologen/Nafion® composite film. Electrochemistry Communications, 2006, 8, 201-205.	4.7	36
40	A highly selective amperometric biosensor array for the simultaneous determination of glutamate, glucose, choline, acetylcholine, lactate and pyruvate. Bioelectrochemistry, 2019, 128, 100-108.	4.6	36
41	Development and optimization of a novel conductometric bi-enzyme biosensor for l-arginine determination. Talanta, 2012, 92, 58-64.	5.5	35
42	Urease-based ISFET biosensor for arginine determination. Talanta, 2014, 121, 18-23.	5.5	35
43	Sensitive impedimetric biosensor for direct detection of diazinon based on lipases. Frontiers in Chemistry, 2014, 2, 44.	3.6	35
44	A Novel Conductometric Urea Biosensor with Improved Analytical Characteristic Based on Recombinant Urease Adsorbed on Nanoparticle of Silicalite. Nanoscale Research Letters, 2016, 11, 106.	5.7	35
45	Thin-film amperometric multibiosensor for simultaneous determination of lactate and glucose in wine. Food Chemistry, 2016, 197, 972-978.	8.2	35
46	Amperometric biosensor based on glycerol oxidase for glycerol determination. Sensors and Actuators B: Chemical, 2010, 144, 361-367.	7.8	34
47	Thermolysin entrapped in a gold nanoparticles/polymer composite for direct and sensitive conductometric biosensing of ochratoxin A in olive oil. Sensors and Actuators B: Chemical, 2015, 221, 480-490.	7.8	34
48	Feasibility of application of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic compounds of different nature. Analytica Chimica Acta, 2015, 854, 161-168.	5.4	33
49	A Novel Amperometric Glutamate Biosensor Based on Glutamate Oxidase Adsorbed on Silicalite. Nanoscale Research Letters, 2017, 12, 260.	5.7	33
50	Development of enzyme biosensor based on pH-sensitive field-effect transistors for detection of phenolic compounds. Bioelectrochemistry, 2002, 55, 79-81.	4.6	32
51	Biosensors Based on Nano-Gold/Zeolite-Modified Ion Selective Field-Effect Transistors for Creatinine Detection. Nanoscale Research Letters, 2017, 12, 162.	5.7	31
52	Analysis of the potato glycoalkaloids by using of enzyme biosensor based on pH-ISFETsâ~†. Talanta, 2005, 66, 28-33.	5.5	30
53	Conductometric enzyme biosensor for patulin determination. Sensors and Actuators B: Chemical, 2017, 239, 1010-1015.	7.8	28
54	Glucose conductometric biosensor with potassium hexacyanoferrate(III) as an oxidizing agent. Analytica Chimica Acta, 1998, 374, 11-18.	5.4	27

#	Article	IF	CITATIONS
55	Electrochemical sensing of trimethylamine based on polypyrrole–flavin-containing monooxygenase (FMO3) and ferrocene as redox probe for evaluation of fish freshness. Biosensors and Bioelectronics, 2011, 28, 105-111.	10.1	27
56	Biosensors. A quarter of a century of R&D experience. Biopolymers and Cell, 2013, 29, 188-206.	0.4	27
57	Application of enzyme/zeolite sensor for urea analysis in serum. Materials Science and Engineering C, 2014, 42, 155-160.	7.3	27
58	Optical fibre biosensors using enzymatic transducers to monitor glucose. Measurement Science and Technology, 2007, 18, 3177-3186.	2.6	26
59	Enzyme Biosensor for Tomatine Detection in Tomatoes. Analytical Letters, 2004, 37, 1611-1624.	1.8	25
60	Kinetics of human and horse sera cholinesterases inhibition with solanaceous glycoalkaloids: Study by potentiometric biosensor. Pesticide Biochemistry and Physiology, 2006, 86, 203-210.	3.6	25
61	Elaboration of Urease Adsorption on Silicalite for Biosensor Creation. Electroanalysis, 2012, 24, 1380-1385.	2.9	25
62	Application of enzyme field effect transistors for fast detection of total glycoalkaloids content in potatoes. Sensors and Actuators B: Chemical, 2004, 103, 416-422.	7.8	24
63	Conductometric biosensor for arginine determination in pharmaceutics. Bioelectrochemistry, 2018, 124, 40-46.	4.6	24
64	Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor. Materials Science and Engineering C, 2006, 26, 453-456.	7.3	23
65	A sensitive and selective thrombin impedimetric aptasensor based on tailored aptamers obtained by solid-phase synthesis. Sensors and Actuators B: Chemical, 2012, 166-167, 715-720.	7.8	23
66	Development of trypsin biosensor based on ion sensitive field-effect transistors for proteins determination. Materials Science and Engineering C, 2006, 26, 369-373.	7.3	20
67	Development of impedimetric DNA biosensor for selective detection and discrimination of oligonucleotide sequences of the rpoB gene of Mycobacterium tuberculosis. Sensors and Actuators B: Chemical, 2016, 222, 1152-1158.	7.8	20
68	Study of zeolite influence on analytical characteristics of urea biosensor based on ion-selective field-effect transistors. Nanoscale Research Letters, 2014, 9, 124.	5.7	19
69	Nanosized zeolites as a perspective material for conductometric biosensors creation. Nanoscale Research Letters, 2015, 10, 209.	5.7	19
70	Early-warning electrochemical biosensor system for environmental monitoring based on enzyme inhibition. Sensors and Actuators B: Chemical, 2005, 105, 81-87.	7.8	19
71	Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase. Talanta, 2015, 144, 604-611.	5.5	18
72	A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate. Talanta, 2016, 150, 469-475.	5.5	18

Sergei Dzyadevych

#	Article	IF	CITATIONS
73	Influence of Composition of Zeolite/Enzyme Nanobiocomposites on Analytical Characteristics of Urea Biosensor Based on Ion-Selective Field-Effect Transistors. Sensor Letters, 2011, 9, 2320-2326.	0.4	17
74	A Novel Highly Sensitive Zeolite-Based Conductometric Microsensor for Ammonium Determination. Analytical Letters, 2012, 45, 1467-1484.	1.8	17
75	Development of Conductometric Sensor Based on 25,27-Di-(5-thio-octyloxy)calix[4]arene-crown-6 for Determination of Ammonium. Nanoscale Research Letters, 2016, 11, 105.	5.7	17
76	Development of electrochemical biosensors with various types of zeolites. Applied Nanoscience (Switzerland), 2019, 9, 737-747.	3.1	17
77	A novel proteinase K biosensor based on interdigitated conductometric electrodes for proteins determination in rivers and sewers water. Sensors and Actuators B: Chemical, 2005, 111-112, 390-395.	7.8	16
78	A microconductometric biosensor based on lipase extracted from <i>Candida rugosa</i> for direct and rapid detection of organophosphate pesticides. International Journal of Environmental Analytical Chemistry, 2015, 95, 466-479.	3.3	16
79	Improvement of amperometric transducer selectivity using nanosized phenylenediamine films. Nanoscale Research Letters, 2017, 12, 594.	5.7	16
80	Nano- and microsized zeolites as a perspective material for potentiometric biosensors creation. Nanoscale Research Letters, 2015, 10, 59.	5.7	15
81	Creatinine Deiminase Adsorption onto Silicalite-Modified pH-FET for Creation of New Creatinine-Sensitive Biosensor. Nanoscale Research Letters, 2016, 11, 173.	5.7	15
82	Protein detection based on microelectrodes with the PPy[3,3-Co(1,2-C2B9H11)]2 solid contact and immobilized proteinases: Preliminary investigations. Materials Science and Engineering C, 2006, 26, 574-577.	7.3	14
83	Biosensors for assay of glycoalkaloids in potato tubers. Applied Biochemistry and Microbiology, 2008, 44, 314-318.	0.9	14
84	Development of Silicalite/Glucose Oxidase-Based Biosensor and Its Application for Glucose Determination in Juices and Nectars. Nanoscale Research Letters, 2016, 11, 59.	5.7	14
85	Conductometric biosensor based on whole-cell microalgae for assessment of heavy metals in wastewater. Biopolymers and Cell, 2007, 23, 511-518.	0.4	14
86	Investigation of characteristics of urea and butyrylcholine chloride biosensors based on ion-selective field-effect transistors modified by the incorporation of heat-treated zeolite Beta crystals. Materials Science and Engineering C, 2012, 32, 1835-1842.	7.3	13
87	Potentiometric enzyme biosensor for aflatoxin B1 detection – Kinetic simulation. Sensors and Actuators B: Chemical, 2018, 259, 580-586.	7.8	13
88	Novel highly sensitive conductometric biosensor based on arginine deiminase from Mycoplasma hominis for determination of arginine. Sensors and Actuators B: Chemical, 2022, 367, 132023.	7.8	13
89	Development of Enzyme Biosensor Based on ISFETs for Quantitative Analysis of Serine Proteinases. Electroanalysis, 2004, 16, 1883-1889.	2.9	12
90	A novel biosensor method for surfactant determination based on acetylcholinesterase inhibition. Measurement Science and Technology, 2012, 23, 065801.	2.6	12

#	Article	IF	CITATIONS
91	Novel Multiplexed Biosensor System for the Determination of Lactate and Pyruvate in Blood Serum. Electroanalysis, 2019, 31, 1608-1614.	2.9	12
92	Development of three-enzyme lactose amperometric biosensor modified by nanosized poly (meta-phenylenediamine) film. Applied Nanoscience (Switzerland), 2022, 12, 1267-1274.	3.1	12
93	Conductometric enzyme biosensors: theory, technology, application. Biopolymers and Cell, 2005, 21, 91-106.	0.4	12
94	Enzyme conductometric biosensor for maltose determination. Biopolymers and Cell, 2009, 25, 272-278.	0.4	12
95	Application of Different Zeolites for Improvement of the Characteristics of a pH-FET Biosensor Based on Immobilized Urease. Electroanalysis, 2013, 25, 468-474.	2.9	11
96	Application of gold nanoparticles for improvement of analytical characteristics of conductometric enzyme biosensors. Applied Nanoscience (Switzerland), 2022, 12, 995-1003.	3.1	11
97	Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation. Biopolymers and Cell, 2014, 30, 291-298.	0.4	10
98	An Enzyme Biosensor Based on Gold Interdigitated Thin Film Electrodes for Water Quality Control. Analytical Letters, 2007, 40, 1307-1316.	1.8	9
99	Hybrid coatings as transducers in optical biosensors. Journal of Coatings Technology Research, 2008, 5, 491-496.	2.5	9
100	Biosensors based on conductometric detection. Biopolymers and Cell, 1998, 14, 268-276.	0.4	9
101	Application of enzyme multibiosensor for toxicity analysis of real water samples of different origin. Biopolymers and Cell, 2009, 25, 204-209.	0.4	9
102	Investigation of Stability of the pH-Sensitive Field-Effect Transistor Characteristics. Sensor Letters, 2011, 9, 2392-2396.	0.4	8
103	Application of silicalite-modified electrode for the development of sucrose biosensor with improved characteristics. Nanoscale Research Letters, 2015, 10, 149.	5.7	8
104	Development of Enzyme Conductometric Biosensor for Dopamine Determination in Aqueous Samples. Electroanalysis, 2021, 33, 2187-2195.	2.9	8
105	FOUR-CHANNEL BIOSENSOR'S ANALYZER OF SACCHARIDES. Sensor Electronics and Microsystem Technologies, 2014, 6, 47-53.	0.2	8
106	Effect of different modifications of BEA-zeolites on operational characteristics of conductometric biosensor. Materials Science and Engineering C, 2012, 32, 1648-1653.	7.3	7
107	A Conductometric Sensor Specific for Cationic Surfactants. Electroanalysis, 2012, 24, 1441-1445.	2.9	7
108	Conductometric sensor with calixarene-based chemosensitive element for the arginine detection. Chemical Papers, 2018, 72, 2687-2697.	2.2	7

Sergei Dzyadevych

#	Article	IF	CITATIONS
109	Solutions for enhancement of sensitivity and metrological reliability of conductometric biosensor systems. Engineering Research Express, 2021, 3, 045008.	1.6	7
110	Conductometric urease microbiosensor based on thin-film interdigitated electrodes for urea determination. Biopolymers and Cell, 1996, 12, 53-57.	0.4	7
111	Amperometric biosensors. Modern technologies and commercial variants. Biopolymers and Cell, 2002, 18, 363-376.	0.4	7
112	Development of bi-enzyme microbiosensor based on solid-contact ion-selective microelectrodes for protein detection. Sensors and Actuators B: Chemical, 2007, 123, 1096-1100.	7.8	6
113	Amperometric biosensors. Key work principles and features of transducers of different generations. Biopolymers and Cell, 2002, 18, 13-25.	0.4	6
114	Development of microbiosensors based on carbon fibres for in vivo determination of glucose, acetylcholine and choline. Biopolymers and Cell, 2002, 18, 489-495.	0.4	6
115	Optimization of enzymatic bioselective elements as components of potentiometric multibiosensor. Biopolymers and Cell, 2008, 24, 41-50.	0.4	6
116	Application of L-lactate-cytochrome c-oxidoreductase for development of amperometric biosensor for L-lactate determination. Biopolymers and Cell, 2009, 25, 194-203.	0.4	6
117	Application of Amperometric Enzyme Biosensors for Wine and Must Analysis. Procedia Chemistry, 2009, 1, 277-280.	0.7	5
118	Impedimetric Aptasensor for Thrombin Detection. Procedia Engineering, 2011, 25, 1461-1464.	1.2	5
119	Potentiality of application of the conductometric L-arginine biosensors for the real sample analysis. Biopolymers and Cell, 2012, 28, 441-448.	0.4	5
120	Application of silicalite for improvement of enzyme adsorption on the stainless steel electrodes. Biopolymers and Cell, 2014, 30, 462-468.	0.4	5
121	INVESTIGATION AND OPTIMIZATION OF CONDUCTOMETRIC TRANSDUCERS BASED ON PLANAR TECHNOLOGY. Sensor Electronics and Microsystem Technologies, 2014, 2, 48-54.	0.2	5
122	Conception of multibiosensor for determination of different toxic substances based on the enzyme inhibitor analysis. Biopolymers and Cell, 2001, 17, 70-77.	0.4	5
123	Potentiometric biosensors based on ISFETs and immobilised cholinesterases. International Journal of Applied Electromagnetics and Mechanics, 2006, 23, 229-244.	0.6	4
124	Clinoptiloliteâ€based Conductometric Sensors for Detection of Ammonium in Aqueous Solutions. Electroanalysis, 2020, 32, 1993-2001.	2.9	4
125	Optimization of multibiosensor operation for inhibitory analysis of toxins. Biopolymers and Cell, 2008, 24, 494-502.	0.4	4
126	Direct evidence of advantage of using nanosized zeolite Beta for ISFET-based biosensor construction. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	3

#	Article	IF	CITATIONS
127	Impedimetric Urea Biosensor Based on Single-Wall Carbon Nanotubes (SWNCT-COOH) and Polypyrrole. Sensor Letters, 2011, 9, 2232-2235.	0.4	3
128	Development of amperometric enzyme biosensor based on carbon fibre electrode and immobilized glucose oxidase. Biopolymers and Cell, 2003, 19, 76-80.	0.4	3
129	Biosensors based on ion-selective field effect transistors: theory, technology, practice. Biopolymers and Cell, 2004, 20, 7-16.	0.4	3
130	The procedure of ethanol determination in wine by enzyme amperometric biosensor. Biopolymers and Cell, 2009, 25, 279-289.	0.4	3
131	Inhibition of immobilized acetylcholinesterase by aflatoxin B1 in a potentiometric biosensor. Biopolymers and Cell, 2016, 32, 271-278.	0.4	3
132	Nonlinear Analytics for Electrochemical Biosensor Design Using Enzyme Aggregates and Delayed Mass Action. Sensors, 2022, 22, 980.	3.8	3
133	Whole-Cell Conductometric Biosensor for Determination Heavy-Metals in Water. , 2007, , .		2
134	INCREASING THE SENSITIVITY AND METROLOGICAL RELIABILITY OF A DIFFERENTIAL CONDUCTOMETRIC BIOSENSOR SYSTEM. Technical Electrodynamics, 2021, 2021, 68-77.	0.7	2
135	Enzyme biosensor based on pHâ€sensitive fieldâ€effect transistors for assessment of total indole alkaloids content in tissue culture of <i>Rauwolfia serpentina</i> . Electrochemical Science Advances, 2022, 2, e2100152.	2.8	2
136	OPTIMIZATION OF METHODS OF LACTATE DETERMINATION IN WINE BY AMPEROMETRIC ENZYME BIOSENSOR. Sensor Electronics and Microsystem Technologies, 2014, 5, 48-57.	0.2	2
137	Smart Sensors and Computer Devices for Agriculture, Food Production Process Control and Medicine. , 2019, , .		2
138	INVESTIGATION AND OPTIMIZATION OF DIFFERENT TRANSDUCERS FOR CREATION OF AMPEROMETRIC BIOSENSORS. Sensor Electronics and Microsystem Technologies, 2014, 2, 55-62.	0.2	1
139	Optimization of sucrose measurement working procedure in real samples using conductometric enzyme biosensor. Biopolymers and Cell, 2007, 23, 501-510.	0.4	1
140	ENZYMATIC BIOSENSORS FOR QUANTITATIVE ANALYSIS OF WINE'S COMPONENTS. Sensor Electronics and Microsystem Technologies, 2014, 5, 49-67.	0.2	1
141	APPLICATION OF ZEOLITES FOR IMMOBILIZATION OF GLUCOSE OXIDASE IN AMPEROMETRIC BIOSENSORS. Sensor Electronics and Microsystem Technologies, 2014, 7, 36-42.	0.2	1
142	Amperometric glucose biosensor with the IrNPs/Ludox – modified enzyme matrix. Biopolymers and Cell, 2018, 34, 367-373.	0.4	1
143	Development of a New Biosensor by Adsorption of Creatinine Deiminase on Monolayers of Micro- and Nanoscale Zeolites. Springer Proceedings in Physics, 2017, , 573-584.	0.2	0
144	Low-temperature stabilization of glucose oxidase as a component of biological sensor. Biopolymers and Cell, 2006, 22, 236-242.	0.4	0

#	Article	IF	CITATIONS
145	METHOD OF MEASUREMENT OF LOCAL CHANGES IN ELECTRIC CONDUCTIVITY OF SOLUTIONS IN DIFFERENTIAL CONDUCTOMETRIC BIOSENSOR SYSTEMS. Praci Institutu Elektrodinamiki Nacionalaïnoi Akademii Nauk Ukraini, 2022, , 62-67.	0.2	0