
Florence Ruggiero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8577090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lack of the myotendinous junction marker col22a1 results in posture and locomotion disabilities in zebrafish. Matrix Biology, 2022, 109, 1-18.	3.6	9
2	Superfast excitation–contraction coupling in adult zebrafish skeletal muscle fibers. Journal of General Physiology, 2022, 154, .	1.9	4
3	Design of PEGylated Three Ligands Silica Nanoparticles for Multi-Receptor Targeting. Nanomaterials, 2021, 11, 177.	4.1	13
4	A dynamic and mosaic basement membrane controls cell intercalation in <i>Drosophila</i> ovaries. Development (Cambridge), 2021, 148, .	2.5	13
5	FGF-2 promotes angiogenesis through a SRSF1/SRSF3/SRPK1-dependent axis that controls VEGFR1 splicing in endothelial cells. BMC Biology, 2021, 19, 173.	3.8	53
6	The Collagen Superfamily: Everything You Always Wanted to Know. Biology of Extracellular Matrix, 2021, , 1-22.	0.3	3
7	Scavenger Receptor Cysteine-Rich domains of Lysyl Oxidase-Like2 regulate endothelial ECM and angiogenesis through non-catalytic scaffolding mechanisms. Matrix Biology, 2020, 88, 33-52.	3.6	20
8	A collagen Vα1-derived fragment inhibits FGF-2 induced-angiogenesis by modulating endothelial cells plasticity through its heparin-binding site. Matrix Biology, 2020, 94, 18-30.	3.6	12
9	Stiffness measurement is a biomarker of skin ageing in vivo. Experimental Dermatology, 2020, 29, 1233-1237.	2.9	9
10	Collagen XV, a multifaceted multiplexin present across tissues and species. Matrix Biology Plus, 2020, 6-7, 100023.	3.5	29
11	Gene profile of zebrafish fin regeneration offers clues to kinetics, organization and biomechanics of basement membrane. Matrix Biology, 2019, 75-76, 82-101.	3.6	27
12	Combination of Traction Assays and Multiphoton Imaging to Quantify Skin Biomechanics. Methods in Molecular Biology, 2019, 1944, 145-155.	0.9	2
13	Spatio-temporal expression and distribution of collagen VI during zebrafish development. Scientific Reports, 2019, 9, 19851.	3.3	13
14	Monitoring dynamic collagen reorganization during skin stretching with fast polarizationâ€resolved second harmonic generation imaging. Journal of Biophotonics, 2019, 12, e201800336.	2.3	31
15	Fishing for collagen function: About development, regeneration and disease. Seminars in Cell and Developmental Biology, 2019, 89, 100-108.	5.0	35
16	The in-silico zebrafish matrisome: A new tool to study extracellular matrix gene and protein functions. Matrix Biology, 2018, 65, 5-13.	3.6	60
17	Human Dermal Fibroblast Subpopulations Display Distinct Gene Signatures Related to Cell Behaviors and Matrisome. Journal of Investigative Dermatology, 2017, 137, 1787-1789.	0.7	36
18	A novel microstructural interpretation for the biomechanics of mouse skin derived from multiscale characterization. Acta Biomaterialia, 2017, 50, 302-311.	8.3	49

#	Article	IF	CITATIONS
19	Hepatitis C virus infection propagates through interactions between Syndecan-1 and CD81 and impacts the hepatocyte glycocalyx. Cellular Microbiology, 2017, 19, e12711.	2.1	31
20	How aging impacts skin biomechanics: a multiscale study in mice. Scientific Reports, 2017, 7, 13750.	3.3	43
21	Slow Muscle Precursors Lay Down a Collagen XV Matrix Fingerprint to Guide Motor Axon Navigation. Journal of Neuroscience, 2016, 36, 2663-2676.	3.6	36
22	Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy. Scientific Reports, 2015, 5, 17635.	3.3	80
23	Estrogens Induce Rapid Cytoskeleton Re-Organization in Human Dermal Fibroblasts via the Non-Classical Receptor GPR30. PLoS ONE, 2015, 10, e0120672.	2.5	30
24	A TALEN-Exon Skipping Design for a Bethlem Myopathy Model in Zebrafish. PLoS ONE, 2015, 10, e0133986.	2.5	23
25	Bone morphogenetic protein signaling promotes morphogenesis of blood vessels, wound epidermis, and actinotrichia during fin regeneration in zebrafish. FASEB Journal, 2015, 29, 4299-4312.	0.5	52
26	Tinkering signaling pathways by gain and loss of protein isoforms: the case of the EDA pathway regulator EDARADD. BMC Evolutionary Biology, 2015, 15, 129.	3.2	9
27	Companion Blood Cells Control Ovarian Stem Cell Niche Microenvironment and Homeostasis. Cell Reports, 2015, 13, 546-560.	6.4	69
28	Subcellular Localization of ENS-1/ERNI in Chick Embryonic Stem Cells. PLoS ONE, 2014, 9, e92039.	2.5	4
29	Collagen XXII binds to collagen-binding integrins via the novel motifs GLQGER and GFKGER. Biochemical Journal, 2014, 459, 217-227.	3.7	26
30	Transcriptomic analysis of mouse limb tendon cells during development. Development (Cambridge), 2014, 141, 3683-3696.	2.5	152
31	Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking. Cellular Microbiology, 2013, 15, n/a-n/a.	2.1	73
32	Knockdown of <i>col22a1</i> gene in zebrafish induces a muscular dystrophy by disruption of the myotendinous junction. Development (Cambridge), 2013, 140, 4602-4613.	2.5	100
33	CCM1–ICAP-1 complex controls β1 integrin–dependent endothelial contractility and fibronectin remodeling. Journal of Cell Biology, 2013, 202, 545-561.	5.2	93
34	Zebrafish Collagen XIV Is Transiently Expressed in Epithelia and Is Required for Proper Function of Certain Basement Membranes. Journal of Biological Chemistry, 2013, 288, 6777-6787.	3.4	26
35	CCM1/ICAP-1 complex controls β1 integrin-dependent endothelial contractility and fibronectin remodelling. Journal of Experimental Medicine, 2013, 210, 2109OIA28.	8.5	0
36	Sizzled Is Unique among Secreted Frizzled-related Proteins for Its Ability to Specifically Inhibit Bone Morphogenetic Protein-1 (BMP-1)/Tolloid-like Proteinases. Journal of Biological Chemistry, 2012, 287, 33581-33593.	3.4	30

#	Article	IF	CITATIONS
37	In Vivo Evidence for a Bridging Role of a Collagen V Subtype at the Epidermis–Dermis Interface. Journal of Investigative Dermatology, 2012, 132, 1841-1849.	0.7	33
38	The development of the myotendinous junction. A review. Muscles, Ligaments and Tendons Journal, 2012, 2, 53-63.	0.3	76
39	Identification of binding partners interacting with the α1-N-propeptide of typeÂV collagen. Biochemical Journal, 2011, 433, 371-381.	3.7	49
40	Lysyl oxidase-like protein-2 regulates sprouting angiogenesis and type IV collagen assembly in the endothelial basement membrane. Blood, 2011, 118, 3979-3989.	1.4	173
41	Characterization of spatial and temporal expression pattern of Col15a1b during zebrafish development. Gene Expression Patterns, 2011, 11, 129-134.	0.8	15
42	Development of the zebrafish myoseptum with emphasis on the myotendinous junction. Cell and Tissue Research, 2011, 346, 439-449.	2.9	56
43	Procollagen C-proteinase Enhancer Stimulates Procollagen Processing by Binding to the C-propeptide Region Only. Journal of Biological Chemistry, 2011, 286, 38932-38938.	3.4	51
44	EGR1 and EGR2 Involvement in Vertebrate Tendon Differentiation. Journal of Biological Chemistry, 2011, 286, 5855-5867.	3.4	178
45	Use of magnetically oriented orthogonal collagen scaffolds for hemi-corneal reconstruction and regeneration. Biomaterials, 2010, 31, 8313-8322.	11.4	73
46	Recombinant Human Collagen XV Regulates Cell Adhesion and Migration. Journal of Biological Chemistry, 2010, 285, 5258-5265.	3.4	43
47	The Collagen V Homotrimer[α1(V)]3Production Is Unexpectedly Favored over the Heterotrimer[α1(V)]2α2(V)in Recombinant Expression Systems. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-13.	3.0	10
48	Molecular Interplay between Endostatin, Integrins, and Heparan Sulfate. Journal of Biological Chemistry, 2009, 284, 22029-22040.	3.4	89
49	Zebrafish collagen XII is present in embryonic connective tissue sheaths (fascia) and basement membranes. Matrix Biology, 2009, 28, 32-43.	3.6	58
50	Craniofacial cartilage morphogenesis requires zebrafish col11a1 activity. Matrix Biology, 2009, 28, 490-502.	3.6	36
51	The Signal Peptide of Staphylococcus aureus Panton Valentine Leukocidin LukS Component Mediates Increased Adhesion to Heparan Sulfates. PLoS ONE, 2009, 4, e5042.	2.5	23
52	Collagen XV, a novel factor in zebrafish notochord differentiation and muscle development. Developmental Biology, 2008, 316, 21-35.	2.0	55
53	Making recombinant extracellular matrix proteins. Methods, 2008, 45, 75-85.	3.8	45
54	Tissue Engineering of the Cornea: Orthogonal Scaffold of Magnetically Aligned Collagen Lamellae for Corneal Stroma Reconstruction. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 6400.	0.5	8

#	Article	IF	CITATIONS
55	Enzymatic cleavage specificity of the proα1(V) chain processing analysed by site-directed mutagenesis. Biochemical Journal, 2007, 405, 299-306.	3.7	19
56	Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction. Biomaterials, 2007, 28, 4268-4276.	11.4	171
57	Structure of the Epstein-Barr Virus Oncogene BARF1. Journal of Molecular Biology, 2006, 359, 667-678.	4.2	43
58	Dual polarization interferometry characterization of carbohydrate–protein interactions. Analytical Biochemistry, 2006, 352, 252-259.	2.4	45
59	A comprehensive study of the spatial and temporal expression of the col5a1 gene in mouse embryos: a clue for understanding collagen V function in developing connective tissues. Cell and Tissue Research, 2006, 327, 323-332.	2.9	42
60	Structural Requirements for Heparin/Heparan Sulfate Binding to Type V Collagen. Journal of Biological Chemistry, 2006, 281, 25195-25204.	3.4	39
61	Substrate-specific Modulation of a Multisubstrate Proteinase. Journal of Biological Chemistry, 2005, 280, 24188-24194.	3.4	90
62	Domains and Maturation Processes That Regulate the Activity of ADAMTS-2, a Metalloproteinase Cleaving the Aminopropeptide of Fibrillar Procollagens Types I–III and V. Journal of Biological Chemistry, 2005, 280, 34397-34408.	3.4	98
63	The collagen superfamily: from the extracellular matrix to the cell membrane. Pathologie Et Biologie, 2005, 53, 430-442.	2.2	297
64	Development of a Functional Skin Matrix Requires Deposition of Collagen V Heterotrimers. Molecular and Cellular Biology, 2004, 24, 6049-6057.	2.3	67
65	Low Resolution Structure Determination Shows Procollagen C-Proteinase Enhancer to be an Elongated Multidomain Glycoprotein. Journal of Biological Chemistry, 2003, 278, 7199-7205.	3.4	29
66	Unhydroxylated Triple Helical Collagen I Produced in Transgenic Plants Provides New Clues on the Role of Hydroxyproline in Collagen Folding and Fibril Formation. Journal of Biological Chemistry, 2001, 276, 43693-43698.	3.4	82
67	Control of Heterotypic Fibril Formation by Collagen V Is Determined by Chain Stoichiometry. Journal of Biological Chemistry, 2001, 276, 24352-24359.	3.4	60
68	Bone Morphogenetic Protein-1 (BMP-1) Mediates C-terminal Processing of Procollagen V Homotrimer. Journal of Biological Chemistry, 2001, 276, 27051-27057.	3.4	36
69	Discoidin Domain Receptor 1 Is Activated Independently of β1 Integrin. Journal of Biological Chemistry, 2000, 275, 5779-5784.	3.4	134
70	Unraveling the Amino Acid Sequence Crucial for Heparin Binding to Collagen V. Journal of Biological Chemistry, 2000, 275, 29377-29382.	3.4	26
71	Molecular Features of the Collagen V Heparin Binding Site. Journal of Biological Chemistry, 1998, 273, 15069-15076.	3.4	51
72	Laminin 5 Binds the NC-1 Domain of Type VII Collagen. Journal of Cell Biology, 1997, 138, 719-728.	5.2	235

#	Article	IF	CITATIONS
73	Human Recombinant α1(V) Collagen Chain. Journal of Biological Chemistry, 1997, 272, 30083-30087.	3.4	78
74	The Membrane-spanning Proteoglycan NG2 Binds to Collagens V and VI through the Central Nonglobular Domain of Its Core Protein. Journal of Biological Chemistry, 1997, 272, 10769-10776.	3.4	144
75	Another look at collagen V and XI molecules. Matrix Biology, 1995, 14, 515-531.	3.6	173
76	Interactions between Cells and Collagen V Molecules or Single Chains Involve Distinct Mechanisms. Experimental Cell Research, 1994, 210, 215-223.	2.6	58
77	The Collagen Superfamily. Topics in Current Chemistry, 0, , 35-84.	4.0	59
78	Inherited Connective Tissue Disorders of Collagens: Lessons from Targeted Mutagenesis. , 0, , .		2