John Nijenhuis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8575700/publications.pdf

Version: 2024-02-01

414414 279798 1,675 33 23 32 citations h-index g-index papers 33 33 33 1470 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention. Progress in Energy and Combustion Science, 2008, 34, 633-666.	31.2	314
2	CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing. Chemical Engineering Science, 2001, 56, 1713-1720.	3.8	265
3	Structured Packings for Multiphase Catalytic Reactors. Industrial & Engineering Chemistry Research, 2008, 47, 3720-3751.	3.7	160
4	Fischer–Tropsch reaction–diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability. Catalysis Science and Technology, 2012, 2, 1221.	4.1	108
5	Atmospheric Pressure Process for Coating Particles Using Atomic Layer Deposition. Chemical Vapor Deposition, 2009, 15, 227-233.	1.3	77
6	A method for agglomeration detection and control in full-scale biomass fired fluidized beds. Chemical Engineering Science, 2007, 62, 644-654.	3.8	65
7	Improved Drying in a Pulsation-Assisted Fluidized Bed. Industrial & Engineering Chemistry Research, 2009, 48, 302-309.	3.7	54
8	Experimental and numerical comparison of structured packings with a randomly packed bed reactor for Fischer–Tropsch synthesis. Catalysis Today, 2009, 147, S2-S9.	4.4	52
9	Computational validation of the scaling rules for fluidized beds. Powder Technology, 2006, 163, 32-40.	4.2	41
10	Monitoring a lab-scale fluidized bed dryer: A comparison between pressure transducers, passive acoustic emissions and vibration measurements. Powder Technology, 2010, 197, 36-48.	4.2	40
11	Influence of Distributed Secondary Gas Injection on the Performance of a Bubbling Fluidized-Bed Reactor. Industrial & Engineering Chemistry Research, 2008, 47, 3601-3618.	3.7	37
12	Four Ways To Introduce Structure in Fluidized Bed Reactors. Industrial & Engineering Chemistry Research, 2007, 46, 4236-4244.	3.7	35
13	Detection of agglomeration and gradual particle size changes in circulating fluidized beds. Powder Technology, 2010, 202, 24-38.	4.2	34
14	Detecting and Counteracting Agglomeration in Fluidized Bed Biomass Combustion. Energy & Samp; Fuels, 2009, 23, 157-169.	5.1	33
15	Process intensification of tubular reactors: Considerations on catalyst hold-up of structured packings. Catalysis Today, 2013, 216, 111-116.	4.4	33
16	The influence of the particle size distribution on fluidized bed hydrodynamics using highâ€ŧhroughput experimentation. AICHE Journal, 2009, 55, 2013-2023.	3.6	32
17	Residence times in fluidized beds with secondary gas injection. Powder Technology, 2008, 180, 321-331.	4.2	30
18	The influence of vessel geometry on fluidized bed dryer hydrodynamics. Powder Technology, 2009, 194, 115-125.	4.2	29

#	Article	IF	CITATIONS
19	Heat transport in structured packings with two-phase co-current downflow. Chemical Engineering Journal, 2012, 185-186, 250-266.	12.7	27
20	Heat transport in structured packings with co-current downflow of gas and liquid. Chemical Engineering Science, 2010, 65, 420-426.	3.8	26
21	Insights in distributed secondary gas injection in a bubbling fluidized bed via discrete particle simulations. Powder Technology, 2008, 183, 454-466.	4.2	25
22	Characterization of the void size distribution in fluidized beds using statistics of pressure fluctuations. Powder Technology, 2005, 160, 81-92.	4.2	24
23	Intensification of co-current gas–liquid reactors using structured catalytic packings: A multiscale approach. Catalysis Today, 2009, 147, S138-S143.	4.4	24
24	Case studies for selective agglomeration detection in fluidized beds: Application of a new screening methodology. Powder Technology, 2010, 203, 148-166.	4.2	21
25	Effect of Distributor Design on the Bottom Zone Hydrodynamics in a Fluidized Bed Dryer Using 1-D X-ray Densitometry Imaging. Industrial & Engineering Chemistry Research, 2009, 48, 7004-7015.	3.7	20
26	Methodology for the Screening of Signal Analysis Methods for Selective Detection of Hydrodynamic Changes in Fluidized Bed Systems. Industrial & Engineering Chemistry Research, 2009, 48, 3158-3166.	3.7	19
27	Prevention of flooding in a countercurrent trickle-bed reactor using additional void space. Chemical Engineering Journal, 2008, 138, 333-340.	12.7	12
28	Early Agglomeration Recognition System (EARS)., 2003,, 571.		10
29	Towards monitoring electrostatics in gas–solid fluidized beds. Canadian Journal of Chemical Engineering, 2008, 86, 493-505.	1.7	9
30	Monitoring slurry-loop reactors for early detection of hydrodynamic instabilities. Chemical Engineering and Processing: Process Intensification, 2005, 44, 959-968.	3.6	7
31	A convection-based single-parameter model for heat transport in multiphase tubular reactors packed with closed cross flow structures. Chemical Engineering Journal, 2013, 233, 265-273.	12.7	7
32	Early Agglomeration Recognition System (EARS). Journal of Energy Resources Technology, Transactions of the ASME, 2006, 128, 143.	2.3	4
33	Structured millichannel multiphase reactors. Computer Aided Chemical Engineering, 2019, 46, 1789-1794.	0.5	1