Stephen A Osmani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8575559/publications.pdf Version: 2024-02-01

STEDHEN & OSMANI

#	Article	IF	CITATIONS
1	Protein Retargeting in Aspergillus nidulans to Study the Function of Nuclear Pore Complex Proteins. Methods in Molecular Biology, 2022, 2502, 183-201.	0.4	Ο
2	<i>Aspergillus nidulans</i> biofilm formation modifies cellular architecture and enables light-activated autophagy. Molecular Biology of the Cell, 2021, 32, 1181-1192.	0.9	4
3	The mode of mitosis is dramatically modified by deletion of a single nuclear pore complex gene in Aspergillus nidulans. Fungal Genetics and Biology, 2019, 130, 72-81.	0.9	5
4	SUMOlock reveals a more complete Aspergillus nidulans SUMOylome. Fungal Genetics and Biology, 2019, 127, 50-59.	0.9	8
5	Poring over chromosomes: mitotic nuclear pore complex segregation. Current Opinion in Cell Biology, 2019, 58, 42-49.	2.6	7
6	Nup2 performs diverse interphase functions inAspergillus nidulans. Molecular Biology of the Cell, 2018, 29, 3144-3154.	0.9	7
7	Microtubules are reversibly depolymerized in response to changing gaseous microenvironments within <i>Aspergillus nidulans</i> biofilms. Molecular Biology of the Cell, 2017, 28, 634-644.	0.9	11
8	Location and functional analysis of the Aspergillus nidulans Aurora kinase confirm mitotic functions and suggest non-mitotic roles. Fungal Genetics and Biology, 2017, 103, 1-15.	0.9	5
9	Mitotic nuclear pore complex segregation involves Nup2 in Aspergillus nidulans. Journal of Cell Biology, 2017, 216, 2813-2826.	2.3	23
10	Microtubuleâ€organizing centers of <i>Aspergillus nidulans</i> are anchored at septa by a disordered protein. Molecular Microbiology, 2017, 106, 285-303.	1.2	32
11	Tools for retargeting proteins within Aspergillus nidulans. PLoS ONE, 2017, 12, e0189077.	1.1	4
12	A mitotic nuclear envelope tether for Gle1 also affects nuclear and nucleolar architecture. Molecular Biology of the Cell, 2016, 27, 3757-3770.	0.9	8
13	Nup2 requires a highly divergent partner, NupA, to fulfill functions at nuclear pore complexes and the mitotic chromatin region. Molecular Biology of the Cell, 2015, 26, 605-621.	0.9	22
14	The Inner Nuclear Membrane Protein Src1 Is Required for Stable Post-Mitotic Progression into G1 in Aspergillus nidulans. PLoS ONE, 2015, 10, e0132489.	1.1	9
15	Mitotic regulation of fungal cell-to-cell connectivity through septal pores involves the NIMA kinase. Molecular Biology of the Cell, 2014, 25, 763-775.	0.9	51
16	The Set1/COMPASS Histone H3 Methyltransferase Helps Regulate Mitosis With the CDK1 and NIMA Mitotic Kinases in <i>Aspergillus nidulans</i> . Genetics, 2014, 197, 1225-1236.	1.2	20
17	Insights into Dynamic Mitotic Chromatin Organization Through the NIMA Kinase Suppressor SonC, a Chromatin-Associated Protein Involved in the DNA Damage Response. Genetics, 2014, 196, 177-195.	1.2	8
18	Identification of Interphase Functions for the NIMA Kinase Involving Microtubules and the ESCRT Pathway. PLoS Genetics, 2014, 10, e1004248.	1.5	24

STEPHEN A OSMANI

#	Article	IF	CITATIONS
19	The NIMA Kinase Is Required To Execute Stage-Specific Mitotic Functions after Initiation of Mitosis. Eukaryotic Cell, 2014, 13, 99-109.	3.4	14
20	Application of a New Dual Localization-Affinity Purification Tag Reveals Novel Aspects of Protein Kinase Biology in Aspergillus nidulans. PLoS ONE, 2014, 9, e90911.	1.1	12
21	Regulation of mitosis by the NIMA kinase involves TINA and its newly discovered partner, An-WDR8, at spindle pole bodies. Molecular Biology of the Cell, 2013, 24, 3842-3856.	0.9	25
22	Functional Analysis of the Aspergillus nidulans Kinome. PLoS ONE, 2013, 8, e58008.	1.1	120
23	A new level of spindle assembly checkpoint inactivation that functions without mitotic spindles. Cell Cycle, 2011, 10, 3805-3806.	1.3	8
24	Nuclear transporters in a multinucleated organism: functional and localization analyses in Aspergillus nidulans. Molecular Biology of the Cell, 2011, 22, 3874-3886.	0.9	41
25	Regulated inactivation of the spindle assembly checkpoint without functional mitotic spindles. EMBO Journal, 2011, 30, 2648-2661.	3.5	16
26	Functional Characterization of a New Member of the Cdk9 Family in Aspergillus nidulans. Eukaryotic Cell, 2010, 9, 1901-1912.	3.4	7
27	γ-Tubulin regulates the anaphase-promoting complex/cyclosome during interphase. Journal of Cell Biology, 2010, 190, 317-330.	2.3	39
28	Single-Step Affinity Purification for Fungal Proteomics. Eukaryotic Cell, 2010, 9, 831-833.	3.4	42
29	Mlp1 Acts as a Mitotic Scaffold to Spatially Regulate Spindle Assembly Checkpoint Proteins in <i>Aspergillus nidulans</i> . Molecular Biology of the Cell, 2009, 20, 2146-2159.	0.9	57
30	The Three Fungal Transmembrane Nuclear Pore Complex Proteins of <i>Aspergillus nidulans</i> Are Dispensable in the Presence of an Intact An-Nup84-120 Complex. Molecular Biology of the Cell, 2009, 20, 616-630.	0.9	86
31	Nucleolar Separation from Chromosomes during Aspergillus nidulans Mitosis Can Occur Without Spindle Forces. Molecular Biology of the Cell, 2009, 20, 2132-2145.	0.9	39
32	Analysis of All Protein Phosphatase Genes in <i>Aspergillus nidulans</i> Identifies a New Mitotic Regulator, Fcp1. Eukaryotic Cell, 2009, 8, 573-585.	3.4	54
33	Double duty for nuclear proteins – the price of more open forms of mitosis. Trends in Genetics, 2009, 25, 545-554.	2.9	40
34	Copy Number Suppressors of the <i>Aspergillus nidulans nimA1</i> Mitotic Kinase Display Distinctive and Highly Dynamic Cell Cycle-Regulated Locations. Eukaryotic Cell, 2008, 7, 2087-2099.	3.4	16
35	Mitosis, Not Just Open or Closed. Eukaryotic Cell, 2007, 6, 1521-1527.	3.4	131
36	Identification and analysis of essential Aspergillus nidulans genes using the heterokaryon rescue technique. Nature Protocols, 2006, 1, 2517-2526.	5.5	117

STEPHEN A OSMANI

#	Article	IF	CITATIONS
37	Fusion PCR and gene targeting in Aspergillus nidulans. Nature Protocols, 2006, 1, 3111-3120.	5.5	701
38	Systematic Deletion and Mitotic Localization of the Nuclear Pore Complex Proteins of Aspergillus nidulans. Molecular Biology of the Cell, 2006, 17, 4946-4961.	0.9	121
39	A Point Mutation in the Aspergillus nidulans sonBNup98 Nuclear Pore Complex Gene Causes Conditional DNA Damage Sensitivity. Genetics, 2006, 174, 1881-1893.	1.2	17
40	A Versatile and Efficient Gene-Targeting System for Aspergillus nidulans. Genetics, 2006, 172, 1557-1566.	1.2	559
41	Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 2005, 438, 1105-1115.	13.7	1,250
42	γ-Tubulin Plays an Essential Role in the Coordination of Mitotic Events. Molecular Biology of the Cell, 2004, 15, 1374-1386.	0.9	57
43	Potential Link between the NIMA Mitotic Kinase and Nuclear Membrane Fission during Mitotic Exit in Aspergillus nidulans. Eukaryotic Cell, 2004, 3, 1433-1444.	3.4	23
44	The Pho80-like Cyclin of Aspergillus nidulans Regulates Development Independently of Its Role in Phosphate Acquisition. Journal of Biological Chemistry, 2004, 279, 37693-37703.	1.6	32
45	The polo-like kinase PLKA is required for initiation and progression through mitosis in the filamentous fungus Aspergillus nidulans. Molecular Microbiology, 2004, 55, 572-587.	1.2	20
46	Partial Nuclear Pore Complex Disassembly during Closed Mitosis in Aspergillus nidulans. Current Biology, 2004, 14, 1973-1984.	1.8	200
47	Rapid Production of Gene Replacement Constructs and Generation of a Green Fluorescent Protein-Tagged Centromeric Marker in Aspergillus nidulans. Eukaryotic Cell, 2004, 3, 1359-1362.	3.4	258
48	The early impact of genetics on our understanding of cell cycle regulation in Aspergillus nidulans. Fungal Genetics and Biology, 2004, 41, 401-410.	0.9	42
49	The genome sequence of the filamentous fungus Neurospora crassa. Nature, 2003, 422, 859-868.	13.7	1,528
50	TINA Interacts with the NIMA Kinase inAspergillus nidulansand Negatively Regulates Astral Microtubules during Metaphase Arrest. Molecular Biology of the Cell, 2003, 14, 3169-3179.	0.9	29
51	Spindle Formation inAspergillusIs Coupled to Tubulin Movement into the Nucleus. Molecular Biology of the Cell, 2003, 14, 2192-2200.	0.9	57
52	The SONBNUP98 Nucleoporin Interacts With the NIMA Kinase in <i>Aspergillus nidulans</i> . Genetics, 2003, 165, 1071-1081.	1.2	43
53	The PHOA and PHOB Cyclin-Dependent Kinases Perform an Essential Function in <i>Aspergillus nidulans</i> . Genetics, 2003, 165, 1105-1115.	1.2	24
54	Mitotic Histone H3 Phosphorylation by the NIMA Kinase in Aspergillus nidulans. Cell, 2000, 102, 293-302.	13.5	153

STEPHEN A OSMANI

#	Article	IF	CITATIONS
55	Checkpoint Defects Leading to Premature Mitosis Also Cause Endoreplication of DNA in Aspergillus nidulans. Molecular Biology of the Cell, 1999, 10, 3661-3674.	0.9	53
56	The Extremely Conserved pyroA Gene ofAspergillus nidulans Is Required for Pyridoxine Synthesis and Is Required Indirectly for Resistance to Photosensitizers. Journal of Biological Chemistry, 1999, 274, 23565-23569.	1.6	159
57	A mitogen-activated protein kinase (MPKA) is involved in polarized growth in the filamentous fungus,Aspergillus nidulans. FEMS Microbiology Letters, 1999, 173, 117-125.	0.7	82
58	A cyclin-dependent kinase family member (PHOA) is required to link developmental fate to environmental conditions in Aspergillus nidulans. EMBO Journal, 1998, 17, 3990-4003.	3.5	63
59	Regulation of the Anaphase-promoting Complex/Cyclosome by <i>bimA</i> ^{APC3} and Proteolysis of NIMA. Molecular Biology of the Cell, 1998, 9, 3019-3030.	0.9	38
60	Cell cycle regulation in <i>Aspergillus</i> by two protein kinases. Biochemical Journal, 1996, 317, 633-641.	1.7	92
61	Isolation of a Functional Homolog of the Cell Cycle-specific NIMA Protein Kinase of Aspergillus nidulans and Functional Analysis of Conserved Residues. Journal of Biological Chemistry, 1995, 270, 18110-18116.	1.6	56
62	Parallel activation of the NIMA and p34cdc2 cell cycle-regulated protein kinases is required to initiate mitosis in A. nidulans. Cell, 1991, 67, 283-291.	13.5	246
63	Spindle formation and chromatin condensation in cells blocked at interphase by mutation of a negative cell cycle control gene. Cell, 1988, 52, 241-251.	13.5	258
64	Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. Cell, 1988, 53, 237-244.	13.5	351
65	Mitotic Cell Cycle Control. , 0, , 61-80.		2