Tony KT Lam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8573655/publications.pdf

Version: 2024-02-01

101543 5,692 66 36 h-index citations papers

65 g-index 66 66 66 6021 docs citations times ranked citing authors all docs

106344

#	Article	IF	Citations
1	The Gut Microbiome: Connecting Diet, Glucose Homeostasis, and Disease. Annual Review of Medicine, 2022, 73, 469-481.	12.2	20
2	Silencing gut CCK cells alters gut reaction to sugar. Nature Neuroscience, 2022, 25, 136-138.	14.8	0
3	Metabolic regulation by the intestinal metformin-AMPK axis. Nature Communications, 2022, 13 , .	12.8	2
4	FXR in the dorsal vagal complex is sufficient and necessary for upper small intestinal microbiome-mediated changes of TCDCA to alter insulin action in rats. Gut, 2021, 70, 1675-1683.	12.1	27
5	Small intestinal taurochenodeoxycholic acid-FXR axis alters local nutrient-sensing glucoregulatory pathways in rats. Molecular Metabolism, 2021, 44, 101132.	6.5	12
6	Peripheral and central regulation of insulin by the intestine and microbiome. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E234-E239.	3.5	15
7	The metabolic impact of small intestinal nutrient sensing. Nature Communications, 2021, 12, 903.	12.8	70
8	Nutrient infusion in the dorsal vagal complex controls hepatic lipid and glucose metabolism in rats. IScience, 2021, 24, 102366.	4.1	2
9	Curative-intent Metastasis-directed Therapies for Molecularly-defined Oligorecurrent Prostate Cancer: A Prospective Phase II Trial Testing the Oligometastasis Hypothesis. European Urology, 2021, 80, 374-382.	1.9	49
10	Interaction of glucose sensing and leptin action in the brain. Molecular Metabolism, 2020, 39, 101011.	6.5	16
11	Bye, bye, bile: how altered bile acid composition changes small intestinal lipid sensing. Gut, 2020, 69, 1549-1550.	12.1	2
12	Inhibition of upper small intestinal mTOR lowers plasma glucose levels by inhibiting glucose production. Nature Communications, 2019, 10, 714.	12.8	18
13	Lactobacillus gasseri in the Upper Small Intestine Impacts an ACSL3-Dependent Fatty Acid-Sensing Pathway Regulating Whole-Body Glucose Homeostasis. Cell Metabolism, 2018, 27, 572-587.e6.	16.2	54
14	Leptin enhances hypothalamic lactate dehydrogenase A (LDHA)–dependent glucose sensing to lower glucose production in high-fat–fed rats. Journal of Biological Chemistry, 2018, 293, 4159-4166.	3.4	18
15	Testicular seminoma: Scattered radiation dose to the contralateral testis in the modern era. Practical Radiation Oncology, 2018, 8, e57-e62.	2.1	3
16	Physiological and therapeutic regulation of glucose homeostasis by upper small intestinal PepT1-mediated protein sensing. Nature Communications, 2018, 9, 1118.	12.8	36
17	Metformin Alters Upper Small Intestinal Microbiota that Impact a Glucose-SGLT1-Sensing Glucoregulatory Pathway. Cell Metabolism, 2018, 27, 101-117.e5.	16.2	187
18	A Gut Feeling for Metformin. Cell Metabolism, 2018, 28, 808-810.	16.2	11

#	Article	IF	Citations
19	The metabolic role of vagal afferent innervation. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 625-636.	17.8	70
20	Beta cell preservation in patients with type 1 diabetes. Nature Medicine, 2018, 24, 1089-1090.	30.7	6
21	Dynamin-Related Protein 1-Dependent Mitochondrial Fission Changes in the Dorsal Vagal Complex Regulate Insulin Action. Cell Reports, 2017, 18, 2301-2309.	6.4	47
22	Use of hydrogel spacer for improved rectal dose-sparing in patients undergoing radical radiotherapy for localized prostate cancer: First Canadian experience. Canadian Urological Association Journal, 2017, 11, 373-5.	0.6	1
23	Glucagon action in the brain. Diabetologia, 2016, 59, 1367-1371.	6.3	35
24	Inhibition of glycine transporter-1 in the dorsal vagal complex improves metabolic homeostasis in diabetes and obesity. Nature Communications, 2016, 7, 13501.	12.8	19
25	Activation of Short and Long Chain Fatty Acid Sensing Machinery in the Ileum Lowers Glucose Production in Vivo. Journal of Biological Chemistry, 2016, 291, 8816-8824.	3.4	37
26	Nutrient and hormone-sensing-dependent regulation. Nature Reviews Endocrinology, 2016, 12, 70-72.	9.6	6
27	Glucagon signalling in the dorsal vagal complex is sufficient and necessary for highâ€protein feeding to regulate glucose homeostasis ⟨i⟩inÂvivo⟨ i⟩. EMBO Reports, 2015, 16, 1299-1307.	4.5	21
28	A fatty acid-dependent hypothalamic–DVC neurocircuitry that regulates hepatic secretion of triglyceride-rich lipoproteins. Nature Communications, 2015, 6, 5970.	12.8	33
29	Glucoregulatory Relevance of Small Intestinal Nutrient Sensing in Physiology, Bariatric Surgery, and Pharmacology. Cell Metabolism, 2015, 22, 367-380.	16.2	51
30	Metformin activates a duodenal Ampk–dependent pathway to lower hepatic glucose production in rats. Nature Medicine, 2015, 21, 506-511.	30.7	313
31	Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network. Nature Medicine, 2015, 21, 498-505.	30.7	122
32	Insulin Signals Through the Dorsal Vagal Complex to Regulate Energy Balance. Diabetes, 2014, 63, 892-899.	0.6	31
33	Jejunal Leptin-PI3K Signaling Lowers Glucose Production. Cell Metabolism, 2014, 19, 155-161.	16.2	27
34	Insulin action in the hypothalamus and dorsal vagal complex. Experimental Physiology, 2014, 99, 1104-1109.	2.0	31
35	FFA-induced hepatic insulin resistance in vivo is mediated by PKCδ, NADPH oxidase, and oxidative stress. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E34-E46.	3.5	86
36	Hormonal Signaling in the Gut. Journal of Biological Chemistry, 2014, 289, 11642-11649.	3.4	60

3

#	Article	IF	CITATIONS
37	Leptin and Aging. Aging, 2014, 6, 82-83.	3.1	16
38	Evidence for a Role of Proline and Hypothalamic Astrocytes in the Regulation of Glucose Metabolism in Rats. Diabetes, 2013 , 62 , $1152-1158$.	0.6	27
39	Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nature Medicine, 2012, 18, 950-955.	30.7	192
40	Hypothalamic Leucine Metabolism Regulates Liver Glucose Production. Diabetes, 2012, 61, 85-93.	0.6	59
41	Lipid Sensing and Insulin Resistance in the Brain. Cell Metabolism, 2012, 15, 646-655.	16.2	70
42	Duodenal Activation of cAMP-Dependent Protein Kinase Induces Vagal Afferent Firing and Lowers Glucose Production in Rats. Gastroenterology, 2012, 142, 834-843.e3.	1.3	41
43	Insulin Activates Erk1/2 Signaling in the Dorsal Vagal Complex to Inhibit Glucose Production. Cell Metabolism, 2012, 16, 500-510.	16.2	88
44	Mediobasal Hypothalamic SIRT1 Is Essential for Resveratrol's Effects on Insulin Action in Rats. Diabetes, 2011, 60, 2691-2700.	0.6	57
45	Hypothalamic Nutrient Sensing Activates a Forebrain-Hindbrain Neuronal Circuit to Regulate Glucose Production In Vivo. Diabetes, 2011, 60, 107-113.	0.6	51
46	Glucose Transporter-1 in the Hypothalamic Glial Cells Mediates Glucose Sensing to Regulate Glucose Production In Vivo. Diabetes, 2011, 60, 1901-1906.	0.6	60
47	Duodenal PKC-δ and Cholecystokinin Signaling Axis Regulates Glucose Production. Diabetes, 2011, 60, 3148-3153.	0.6	27
48	Hypothalamic AMP-Activated Protein Kinase Regulates Glucose Production. Diabetes, 2010, 59, 2435-2443.	0.6	74
49	CNS Regulation of Glucose Homeostasis. Physiology, 2009, 24, 159-170.	3.1	80
50	Hypothalamic sensing of circulating lactate regulates glucose production. Journal of Cellular and Molecular Medicine, 2009, 13, 4403-4408.	3.6	25
51	Intestinal Cholecystokinin Controls Glucose Production through a Neuronal Network. Cell Metabolism, 2009, 10, 99-109.	16.2	155
52	Upper intestinal lipids trigger a gut–brain–liver axis to regulate glucose production. Nature, 2008, 452, 1012-1016.	27.8	254
53	Activation of Central Lactate Metabolism Lowers Glucose Production in Uncontrolled Diabetes and Diet-Induced Insulin Resistance. Diabetes, 2008, 57, 836-840.	0.6	41
54	Hypothalamic Protein Kinase C Regulates Glucose Production. Diabetes, 2008, 57, 2061-2065.	0.6	50

#	Article	IF	CITATIONS
55	Central lactate metabolism regulates food intake. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E491-E496.	3.5	60
56	Brain glucose metabolism controls the hepatic secretion of triglyceride-rich lipoproteins. Nature Medicine, 2007, 13, 171-180.	30.7	136
57	Brain Glucose Metabolism Controls Hepatic Glucose and Lipid Production. Cellscience, 2007, 3, 63-69.	0.3	7
58	Molecular disruption of hypothalamic nutrient sensing induces obesity. Nature Neuroscience, 2006, 9, 227-233.	14.8	205
59	Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. Journal of Clinical Investigation, 2006, 116, 1081-1091.	8.2	184
60	Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nature Medicine, 2005, 11, 320-327.	30.7	390
61	Hypothalamic sensing of fatty acids. Nature Neuroscience, 2005, 8, 579-584.	14.8	420
62	Hypothalamic KATP channels control hepatic glucose production. Nature, 2005, 434, 1026-1031.	27.8	569
63	Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism. Science, 2005, 309, 943-947.	12.6	307
64	Mechanisms of the free fatty acid-induced increase in hepatic glucose production. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E863-E873.	3.5	208
65	Free fatty acids increase basal hepatic glucose production and induce hepatic insulin resistance at different sites. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E281-E290.	3.5	128
66	Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-δ. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E682-E691.	3. 5	173