
B J Casey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8572539/publications.pdf Version: 2024-02-01

RICACEV

#	Article	lF	CITATIONS
1	Making the Sentencing Case: Psychological and Neuroscientific Evidence for Expanding the Age of Youthful Offenders. Annual Review of Criminology, 2022, 5, 321-343.	3.5	7
2	Genetic variation in endocannabinoid signaling is associated with differential networkâ€level functional connectivity in youth. Journal of Neuroscience Research, 2022, 100, 731-743.	2.9	8
3	Longitudinal Evidence of a Vicious Cycle Between Nucleus Accumbens Microstructure and Childhood Weight Gain. Journal of Adolescent Health, 2022, 70, 961-969.	2.5	12
4	Altered hippocampal microstructure and function in children who experienced Hurricane Irma. Developmental Psychobiology, 2021, 63, 864-877.	1.6	5
5	Role of BDNF in the development of an OFC-amygdala circuit regulating sociability in mouse and human. Molecular Psychiatry, 2021, 26, 955-973.	7.9	32
6	Individual Differences in Cognitive Performance Are Better Predicted by Global Rather Than Localized BOLD Activity Patterns Across the Cortex. Cerebral Cortex, 2021, 31, 1478-1488.	2.9	24
7	Responsible Use of Open-Access Developmental Data: The Adolescent Brain Cognitive Development (ABCD) Study. Psychological Science, 2021, 32, 866-870.	3.3	39
8	Baseline brain function in the preadolescents of the ABCD Study. Nature Neuroscience, 2021, 24, 1176-1186.	14.8	48
9	Substance use patterns in 9-10 year olds: Baseline findings from the adolescent brain cognitive development (ABCD) study. Drug and Alcohol Dependence, 2021, 227, 108946.	3.2	19
10	Adolescent civic engagement: Lessons from Black Lives Matter. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	32
11	Procedurally just organizational climates improve relations between corrections officers and incarcerated individuals. Psychology, Crime and Law, 2021, 27, 456-475.	1.0	3
12	Distinct and similar patterns of emotional development in adolescents and young adults. Developmental Psychobiology, 2020, 62, 591-599.	1.6	10
13	Nucleus accumbens cytoarchitecture predicts weight gain in children. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26977-26984.	7.1	47
14	Behavioral and brain signatures of substance use vulnerability in childhood. Developmental Cognitive Neuroscience, 2020, 46, 100878.	4.0	23
15	A Neurobiological Model of Alcohol Marketing Effects on Underage Drinking. Journal of Studies on Alcohol and Drugs Supplement, 2020, Sup 19, 68-80.	3.7	10
16	The importance of social factors in the association between physical activity and depression in child and Adolescent Psychiatry and Mental Health, 2020, 14, 28.	2.5	24
17	Correspondence Between Perceived Pubertal Development and Hormone Levels in 9-10 Year-Olds From the Adolescent Brain Cognitive Development Study. Frontiers in Endocrinology, 2020, 11, 549928.	3.5	45
18	Behavioral and Neural Signatures of Working Memory in Childhood. Journal of Neuroscience, 2020, 40, 5090-5104.	3.6	50

#	Article	IF	CITATIONS
19	Healthy Development as a Human Right: Insights from Developmental Neuroscience for Youth Justice. Annual Review of Law and Social Science, 2020, 16, 203-222.	1.3	9
20	Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. NeuroImage, 2019, 202, 116091.	4.2	539
21	Longitudinal changes in brain structures related to appetitive reactivity and regulation across development. Developmental Cognitive Neuroscience, 2019, 38, 100675.	4.0	6
22	Healthy Development as a Human Right: Lessons from Developmental Science. Neuron, 2019, 102, 724-727.	8.1	12
23	Development of the emotional brain. Neuroscience Letters, 2019, 693, 29-34.	2.1	239
24	Prediction complements explanation in understanding the developing brain. Nature Communications, 2018, 9, 589.	12.8	144
25	Combined effects of peer presence, social cues, and rewards on cognitive control in adolescents. Developmental Psychobiology, 2018, 60, 292-302.	1.6	39
26	The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 2018, 32, 43-54.	4.0	1,282
27	The racially diverse affective expression (RADIATE) face stimulus set. Psychiatry Research, 2018, 270, 1059-1067.	3.3	66
28	vlPFC–vmPFC–Amygdala Interactions Underlie Age-Related Differences in Cognitive Regulation of Emotion. Cerebral Cortex, 2017, 27, bhw073.	2.9	129
29	At risk of being risky: The relationship between "brain age―under emotional states and risk preference. Developmental Cognitive Neuroscience, 2017, 24, 93-106.	4.0	65
30	Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 2017, 23, 28-38.	30.7	1,554
31	Patients with bulimia nervosa do not show typical neurodevelopment of cognitive control under emotional influences. Psychiatry Research - Neuroimaging, 2017, 266, 59-65.	1.8	14
32	Effect of Early-Life Fluoxetine on Anxiety-Like Behaviors in BDNF Val66Met Mice. American Journal of Psychiatry, 2017, 174, 1203-1213.	7.2	19
33	The transition from childhood to adolescence is marked by a general decrease in amygdala reactivity and an affect-specific ventral-to-dorsal shift in medial prefrontal recruitment. Developmental Cognitive Neuroscience, 2017, 25, 128-137.	4.0	73
34	Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories. Nature Communications, 2016, 7, 11475.	12.8	127
35	Beyond simple models of adolescence to an integrated circuit-based account: A commentary. Developmental Cognitive Neuroscience, 2016, 17, 128-130.	4.0	158
36	Changes in cortico-subcortical and subcortico-subcortical connectivity impact cognitive control to emotional cues across development. Social Cognitive and Affective Neuroscience, 2016, 11, nsw097.	3.0	40

#	Article	IF	CITATIONS
37	Brain Region–Specific Degeneration with Disease Progression in Late Infantile Neuronal Ceroid Lipofuscinosis (CLN2 Disease). American Journal of Neuroradiology, 2016, 37, 1160-1169.	2.4	19
38	Individual differences in frontolimbic circuitry and anxiety emerge with adolescent changes in endocannabinoid signaling across species. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4500-4505.	7.1	72
39	The neurodynamics of emotion: delineating typical and atypical emotional processes during adolescence. Developmental Science, 2016, 19, 3-18.	2.4	61
40	When Is an Adolescent an Adult? Assessing Cognitive Control in Emotional and Nonemotional Contexts. Psychological Science, 2016, 27, 549-562.	3.3	202
41	The Impact of Emotional States on Cognitive Control Circuitry and Function. Journal of Cognitive Neuroscience, 2016, 28, 446-459.	2.3	28
42	ADHD and cannabis use in young adults examined using fMRI of a Go/NoGo task. Brain Imaging and Behavior, 2016, 10, 761-771.	2.1	31
43	Anxiety is related to indices of cortical maturation in typically developing children and adolescents. Brain Structure and Function, 2016, 221, 3013-3025.	2.3	43
44	Dyslexia and language impairment associated genetic markers influence cortical thickness and white matter in typically developing children. Brain Imaging and Behavior, 2016, 10, 272-282.	2.1	27
45	The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository. NeuroImage, 2016, 124, 1149-1154.	4.2	251
46	Optimizing treatments for anxiety by age and genetics. Annals of the New York Academy of Sciences, 2015, 1345, 16-24.	3.8	16
47	Consider the Source: Adolescents and Adults Similarly Follow Older Adult Advice More than Peer Advice. PLoS ONE, 2015, 10, e0128047.	2.5	19
48	The Adolescent Brain and the Emergence and Peak of Psychopathology. Journal of Infant, Child, and Adolescent Psychotherapy, 2015, 14, 3-15.	0.8	89
49	FAAH genetic variation enhances fronto-amygdala function in mouse and human. Nature Communications, 2015, 6, 6395.	12.8	227
50	Easy to remember, difficult to forget: The development of fear regulation. Developmental Cognitive Neuroscience, 2015, 11, 42-55.	4.0	28
51	Neural Correlates of Expected Risks and Returns in Risky Choice across Development. Journal of Neuroscience, 2015, 35, 1549-1560.	3.6	107
52	Extinction during memory reconsolidation blocks recovery of fear in adolescents. Scientific Reports, 2015, 5, 8863.	3.3	57
53	The impact of developmental timing for stress and recovery. Neurobiology of Stress, 2015, 1, 184-194.	4.0	175
54	Treating the Developing versus Developed Brain: Translating Preclinical Mouse and Human Studies. Neuron, 2015, 86, 1358-1368.	8.1	88

#	Article	IF	CITATIONS
55	Family income, parental education and brain structure in children and adolescents. Nature Neuroscience, 2015, 18, 773-778.	14.8	979
56	Beyond Simple Models of Self-Control to Circuit-Based Accounts of Adolescent Behavior. Annual Review of Psychology, 2015, 66, 295-319.	17.7	545
57	Law and neuroscience: recommendations submitted to the President's Bioethics Commission. Journal of Law and the Biosciences, 2014, 1, 224-236.	1.6	7
58	Schizophrenia-risk variant rs6994992 in the neuregulin-1 gene on brain developmental trajectories in typically developing children. Translational Psychiatry, 2014, 4, e392-e392.	4.8	9
59	Environmental and Genetic Influences on Neurocognitive Development. Clinical Psychological Science, 2014, 2, 628-637.	4.0	27
60	Teens Impulsively React rather than Retreat from Threat. Developmental Neuroscience, 2014, 36, 220-227.	2.0	87
61	Adolescents let sufficient evidence accumulate before making a decision when large incentives are at stake. Developmental Science, 2014, 17, 59-70.	2.4	41
62	Default Mode Network Mechanisms of Transcranial Magnetic Stimulation in Depression. Biological Psychiatry, 2014, 76, 517-526.	1.3	537
63	Rewiring juvenile justice: the intersection of developmental neuroscience and legal policy. Trends in Cognitive Sciences, 2014, 18, 63-65.	7.8	58
64	Elevated amygdala response to faces and gaze aversion in autism spectrum disorder. Social Cognitive and Affective Neuroscience, 2014, 9, 106-117.	3.0	121
65	Adolescent mental health—Opportunity and obligation. Science, 2014, 346, 547-549.	12.6	358
66	Curbing Craving. Psychological Science, 2014, 25, 1932-1942.	3.3	70
67	A Neurodevelopmental Perspective on the Research Domain Criteria (RDoC) Framework. Biological Psychiatry, 2014, 76, 350-353.	1.3	299
68	The Impact of Stimulants on Cognition and the Brain in Attention-Deficit/Hyperactivity Disorder: What Does Age Have to Do With It?. Biological Psychiatry, 2014, 76, 596-598.	1.3	2
69	Fear and Anxiety from Principle to Practice: Implications for When to Treat Youth With Anxiety Disorders. Biological Psychiatry, 2014, 75, e19-e20.	1.3	42
70	Commentary on Spielberg at al., "Exciting fear in adolescence: Does pubertal development alter threat processing?― Developmental Cognitive Neuroscience, 2014, 8, 96-97.	4.0	4
71	The NIH Toolbox Cognition Battery: Results from a large normative developmental sample (PING) Neuropsychology, 2014, 28, 1-10.	1.3	163
72	DSM-5 and RDoC: progress in psychiatry research?. Nature Reviews Neuroscience, 2013, 14, 810-814.	10.2	326

#	Article	IF	CITATIONS
73	Early-life stress has persistent effects on amygdala function and development in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18274-18278.	7.1	240
74	Genomeâ€wide association study of shared components of reading disability and language impairment. Genes, Brain and Behavior, 2013, 12, 792-801.	2.2	95
75	Treating the Developing Brain: Implications from Human Imaging and Mouse Genetics. Annual Review of Medicine, 2013, 64, 427-439.	12.2	27
76	Fear learning and memory across adolescent development. Hormones and Behavior, 2013, 64, 380-389.	2.1	61
77	Adjusting behavior to changing environmental demands with development. Neuroscience and Biobehavioral Reviews, 2013, 37, 2233-2242.	6.1	42
78	Translational developmental studies of stress on brain and behavior: Implications for adolescent mental health and illness?. Neuroscience, 2013, 249, 53-62.	2.3	67
79	Caloric Restriction Enhances Fear Extinction Learning in Mice. Neuropsychopharmacology, 2013, 38, 930-937.	5.4	40
80	The Teenage Brain. Current Directions in Psychological Science, 2013, 22, 146-151.	5.3	6
81	The Teenage Brain. Current Directions in Psychological Science, 2013, 22, 82-87.	5.3	305
82	Risk for anxiety and implications for treatment: developmental, environmental, and genetic factors governing fear regulation. Annals of the New York Academy of Sciences, 2013, 1304, 1-13.	3.8	17
83	Behavioral and neural correlates of delay of gratification 40 years later. Annals of Neurosciences, 2012, 19, 27-8.	1.7	13
84	Long-term influence of normal variation in neonatal characteristics on human brain development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20089-20094.	7.1	158
85	Association of common genetic variants in GPCPD1 with scaling of visual cortical surface area in humans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3985-3990.	7.1	50
86	Altered fear learning across development in both mouse and human. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16318-16323.	7.1	334
87	Serotonin transporter polyadenylation polymorphism modulates the retention of fear extinction memory. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5493-5498.	7.1	73
88	Multimodal imaging of the self-regulating developing brain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19620-19625.	7.1	192
89	Neuroanatomical Assessment of Biological Maturity. Current Biology, 2012, 22, 1693-1698.	3.9	328
90	Prefrontal Cortical Organization and Function: Implications for Externalizing Disorders. Biological Psychiatry, 2011, 69, 1131-1132.	1.3	11

#	Article	IF	CITATIONS
91	Atypical Prefrontal Connectivity in Attention-Deficit/Hyperactivity Disorder: Pathway to Disease or Pathological End Point?. Biological Psychiatry, 2011, 69, 1168-1177.	1.3	194
92	Behavioral Assessment of Emotion Discrimination, Emotion Regulation, and Cognitive Control in Childhood, Adolescence, and Adulthood. Frontiers in Psychology, 2011, 2, 39.	2.1	206
93	Language and cognitive outcomes in internationally adopted children. Development and Psychopathology, 2011, 23, 629-646.	2.3	66
94	Elevated amygdala response to faces following early deprivation. Developmental Science, 2011, 14, 190-204.	2.4	396
95	Braking and Accelerating of the Adolescent Brain. Journal of Research on Adolescence, 2011, 21, 21-33.	3.7	458
96	â€~Willpower' over the life span: decomposing self-regulation. Social Cognitive and Affective Neuroscience, 2011, 6, 252-256.	3.0	421
97	Transitional and translational studies of risk for anxiety. Depression and Anxiety, 2011, 28, 18-28.	4.1	35
98	Behavioral and neural correlates of delay of gratification 40 years later. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14998-15003.	7.1	572
99	Frontostriatal Maturation Predicts Cognitive Control Failure to Appetitive Cues in Adolescents. Journal of Cognitive Neuroscience, 2011, 23, 2123-2134.	2.3	433
100	Behavioral and Neural Properties of Social Reinforcement Learning. Journal of Neuroscience, 2011, 31, 13039-13045.	3.6	138
101	Selective early-acquired fear memories undergo temporary suppression during adolescence. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1182-1187.	7.1	137
102	Developmental neurobiology of cognitive control and motivational systems. Current Opinion in Neurobiology, 2010, 20, 236-241.	4.2	520
103	Imaging genetics and development: Challenges and promises. Human Brain Mapping, 2010, 31, 838-851.	3.6	27
104	Variant brainâ€derived neurotrophic factor Val66Met endophenotypes: implications for posttraumatic stress disorder. Annals of the New York Academy of Sciences, 2010, 1208, 150-157.	3.8	120
105	Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Developmental Science, 2010, 13, 46-61.	2.4	740
106	A time of change: Behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain and Cognition, 2010, 72, 124-133.	1.8	748
107	Adolescence: What Do Transmission, Transition, and Translation Have to Do with It?. Neuron, 2010, 67, 749-760.	8.1	208
108	A Genetic Variant BDNF Polymorphism Alters Extinction Learning in Both Mouse and Human. Science, 2010. 327. 863-866.	12.6	541

#	Article	IF	CITATIONS
109	Executive and Attention Functioning Among Children in the PANDAS Subgroup. Child Neuropsychology, 2009, 15, 179-194.	1.3	28
110	Functional MRI and Response Inhibition in Children Exposed to Cocaine in utero. Developmental Neuroscience, 2009, 31, 159-166.	2.0	58
111	Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 912-917.	7.1	648
112	Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development. Neuroscience, 2009, 164, 108-120.	2.3	126
113	The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 2009, 168, 242-249.	3.3	2,767
114	The bivalent side of the nucleus accumbens. NeuroImage, 2009, 44, 1178-1187.	4.2	101
115	<i>The Adolescent Brain</i> . Annals of the New York Academy of Sciences, 2008, 1124, 111-126.	3.8	1,978
116	The adolescent brain. Developmental Review, 2008, 28, 62-77.	4.7	1,385
117	Frontostriatal Connectivity and Its Role in Cognitive Control in Parent-Child Dyads With ADHD. American Journal of Psychiatry, 2007, 164, 1729-1736.	7.2	254
118	The aftermath of 9/11: Effect of intensity and recency of trauma on outcome Emotion, 2007, 7, 227-238.	1.8	53
119	New potential leads in the biology and treatment of attention deficit-hyperactivity disorder. Current Opinion in Neurology, 2007, 20, 119-124.	3.6	86
120	Sensitivity of the nucleus accumbens to violations in expectation of reward. Neurolmage, 2007, 34, 455-461.	4.2	47
121	Riskâ€ŧaking and the adolescent brain: who is at risk?. Developmental Science, 2007, 10, F8-F14.	2.4	462
122	Neural and behavioral correlates of expectancy violations in attention-deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2007, 48, 881-889.	5.2	88
123	ADHD- and medication-related brain activation effects in concordantly affected parent-child dyads with ADHD. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2007, 48, 899-913.	5.2	146
124	Assessment and prevention of head motion during imaging of patients with attention deficit hyperactivity disorder. Psychiatry Research - Neuroimaging, 2007, 155, 75-82.	1.8	75
125	Etiologic Subtypes of Attention-Deficit/Hyperactivity Disorder: Brain Imaging, Molecular Genetic and Environmental Factors and the Dopamine Hypothesis. Neuropsychology Review, 2007, 17, 39-59.	4.9	510
126	Earlier Development of the Accumbens Relative to Orbitofrontal Cortex Might Underlie Risk-Taking Behavior in Adolescents. Journal of Neuroscience, 2006, 26, 6885-6892.	3.6	1,084

#	Article	IF	CITATIONS
127	Frontostriatal Microstructure Modulates Efficient Recruitment of Cognitive Control. Cerebral Cortex, 2006, 16, 553-560.	2.9	424
128	Activation in Ventral Prefrontal Cortex is Sensitive to Genetic Vulnerability for Attention-Deficit Hyperactivity Disorder. Biological Psychiatry, 2006, 60, 1062-1070.	1.3	174
129	Anterior Cingulate and Posterior Parietal Cortices Are Sensitive to Dissociable Forms of Conflict in a Task-Switching Paradigm. Neuron, 2006, 50, 643-653.	8.1	222
130	From Behavior to Cognition to the Brain and Back: What Have We Learned From Functional Imaging Studies of Attention Deficit Hyperactivity Disorder?. American Journal of Psychiatry, 2006, 163, 957-960.	7.2	71
131	A shift from diffuse to focal cortical activity with development. Developmental Science, 2006, 9, 1-8.	2.4	598
132	A shift from diffuse to focal cortical activity with development: the authors' reply. Developmental Science, 2006, 9, 18-20.	2.4	29
133	The face behind the mask: a developmental study. Developmental Science, 2006, 9, 288-294.	2.4	14
134	Processing emotional facial expressions influences performance on a Go/NoGo task in pediatric anxiety and depression. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2006, 47, 1107-1115.	5.2	83
135	What have we learned about cognitive development from neuroimaging?. Neuropsychologia, 2006, 44, 2149-2157.	1.6	253
136	Special considerations for functional magnetic resonance imaging of pediatric populations. Journal of Magnetic Resonance Imaging, 2006, 23, 877-886.	3.4	67
137	Context Modulates Early Stimulus Processing when Resolving Stimulus-response Conflict. Journal of Cognitive Neuroscience, 2006, 18, 781-792.	2.3	36
138	Beyond What Develops When. Current Directions in Psychological Science, 2006, 15, 24-29.	5.3	60
139	Predicting Cognitive Control From Preschool to Late Adolescence and Young Adulthood. Psychological Science, 2006, 17, 478-484.	3.3	300
140	Differential effects of DRD4 and DAT1 genotype on fronto-striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls. Molecular Psychiatry, 2005, 10, 678-685.	7.9	204
141	Changes in cerebral functional organization during cognitive development. Current Opinion in Neurobiology, 2005, 15, 239-244.	4.2	392
142	Altered Emotional Processing in Pediatric Anxiety, Depression, and Comorbid Anxiety-Depression. Journal of Abnormal Child Psychology, 2005, 33, 165-177.	3.5	104
143	An integrative theory of attention-deficit/ hyperactivity disorder based on the cognitive and affective neurosciences. Development and Psychopathology, 2005, 17, 785-806.	2.3	448
144	The Role of Ventral Frontostriatal Circuitry in Reward-Based Learning in Humans. Journal of Neuroscience, 2005, 25, 8650-8656.	3.6	182

#	Article	IF	CITATIONS
145	Intentional false responding shares neural substrates with response conflict and cognitive control. NeuroImage, 2005, 25, 267-277.	4.2	210
146	Contributions of the hippocampus and the striatum to simple association and frequency-based learning. NeuroImage, 2005, 27, 291-298.	4.2	28
147	Imaging the developing brain: what have we learned about cognitive development?. Trends in Cognitive Sciences, 2005, 9, 104-110.	7.8	1,224
148	Contributions of amygdala and striatal activity in emotion regulation. Biological Psychiatry, 2005, 57, 624-632.	1.3	305
149	MR quantitation of volume and diffusion changes in the developing brain. American Journal of Neuroradiology, 2005, 26, 45-9.	2.4	69
150	Early development of subcortical regions involved in non-cued attention switching. Developmental Science, 2004, 7, 534-542.	2.4	60
151	Opiate addicts lack error-dependent activation of rostral anterior cingulate. Biological Psychiatry, 2004, 55, 531-537.	1.3	225
152	Developmental cognitive neuroscience: progress and potential. Trends in Cognitive Sciences, 2004, 8, 122-128.	7.8	95
153	Differential cingulate and caudate activation following unexpected nonrewarding stimuli. NeuroImage, 2004, 23, 1039-1045.	4.2	46
154	Brain plasticity, learning, and developmental disabilities. Mental Retardation and Developmental Disabilities Research Reviews, 2003, 9, 133-134.	3.6	11
155	Imaging the developing brain with fMRI. Mental Retardation and Developmental Disabilities Research Reviews, 2003, 9, 161-167.	3.6	62
156	Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry, 2003, 53, 871-878.	1.3	563
157	Parametric manipulation of conflict and response competition using rapid mixed-trial event-related fMRI. NeuroImage, 2003, 20, 2135-2141.	4.2	175
158	Dissociating Striatal and Hippocampal Function Developmentally with a Stimulus–Response Compatibility Task. Journal of Neuroscience, 2002, 22, 8647-8652.	3.6	123
159	The Effect of Preceding Context on Inhibition: An Event-Related fMRI Study. NeuroImage, 2002, 16, 449-453.	4.2	328
160	NEUROSCIENCE: Windows into the Human Brain. Science, 2002, 296, 1408-1409.	12.6	30
161	Converging methods in developmental science: An introduction. Developmental Psychobiology, 2002, 40, 197-199.	1.6	7
162	Clinical, imaging, lesion, and genetic approaches toward a model of cognitive control. Developmental Psychobiology, 2002, 40, 237-254.	1.6	254

#	Article	IF	CITATIONS
163	A neural basis for the development of inhibitory control. Developmental Science, 2002, 5, F9.	2.4	547
164	Introduction: new methods in developmental science. Developmental Science, 2002, 5, 265-267.	2.4	36
165	Functional magnetic resonance imaging: basic principles of and application to developmental science. Developmental Science, 2002, 5, 301-309.	2.4	43
166	Amygdala response to facial expressions in children and adults. Biological Psychiatry, 2001, 49, 309-316.	1.3	459
167	Sensitivity of prefrontal cortex to changes in target probability: A functional MRI study. Human Brain Mapping, 2001, 13, 26-33.	3.6	141
168	Evidence for a mechanistic model of cognitive control. Clinical Neuroscience Research, 2001, 1, 267-282.	0.8	138
169	Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8728-8733.	7.1	357
170	Structural and functional brain development and its relation to cognitive development. Biological Psychology, 2000, 54, 241-257.	2.2	1,222
171	A pilot study of amygdala volumes in pediatric generalized anxiety disorder. Biological Psychiatry, 2000, 48, 51-57.	1.3	302
172	A longitudinal study of chronic disease and depressive symptoms in a community sample of older people. Aging and Mental Health, 1999, 3, 351-357.	2.8	13
173	Developmental traumatology part II: brain developmentâ^—â^—See accompanying Editorial, in this issue Biological Psychiatry, 1999, 45, 1271-1284.	1.3	873
174	A Developmental Functional MRI Study of Spatial Working Memory. NeuroImage, 1999, 10, 327-338.	4.2	278
175	Brain Development, XII. American Journal of Psychiatry, 1999, 156, 504-504.	7.2	14
176	Reproducibility of fMRI Results across Four Institutions Using a Spatial Working Memory Task. NeuroImage, 1998, 8, 249-261.	4.2	198
177	A Developmental Functional MRI Study of Prefrontal Activation during Performance of a Go-No-Go Task. Journal of Cognitive Neuroscience, 1997, 9, 835-847.	2.3	988
178	A pediatric functional MRI study of prefrontal activation during performance of a Go-No-Go task. NeuroImage, 1996, 3, S593.	4.2	4
179	A functional MRI study of hierarchical cortical activation as a function of task complexity. NeuroImage, 1996, 3, S536.	4.2	3
180	Activation of Prefrontal Cortex in Children during a Nonspatial Working Memory Task with Functional MRI. NeuroImage, 1995, 2, 221-229.	4.2	333

#	Article	IF	CITATIONS
181	Quantitative morphology of the corpus callosum in attention deficit hyperactivity disorder. American Journal of Psychiatry, 1994, 151, 665-669.	7.2	377
182	Cognitive functioning in sydenham's chorea: Part 1. attentional processes. Developmental Neuropsychology, 1994, 10, 75-88.	1.4	19
183	Functional MRI mapping of stimulus rate effects across visual processing stages. Human Brain Mapping, 1994, 1, 117-133.	3.6	43
184	Regional brain activity when selecting a response despite interference: An H ₂ ¹⁵ O PET study of the stroop and an emotional stroop. Human Brain Mapping, 1994, 1, 194-209.	3.6	231
185	Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Human Brain Mapping, 1994, 1, 293-304.	3.6	498
186	Cognitive functioning in sydenham's chorea: Part 2. executive functioning. Developmental Neuropsychology, 1994, 10, 89-96.	1.4	21
187	Sydenham's chorea: physical and psychological symptoms of St Vitus dance. Pediatrics, 1993, 91, 706-13.	2.1	192