David Albesa-Jové

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8571979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ldentification of Tse8 as a Type VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells. Nature Microbiology, 2021, 6, 1199-1210.	13.3	30
2	Dissecting the Structural and Chemical Determinants of the "Open-to-Closed―Motion in the Mannosyltransferase PimA from Mycobacteria. Biochemistry, 2020, 59, 2934-2945.	2.5	5
3	Structural insights into Pseudomonas aeruginosa Type six secretion system exported effector 8. Journal of Structural Biology, 2020, 212, 107651.	2.8	3
4	The allosteric control mechanism of bacterial glycogen biosynthesis disclosed by cryoEM. Current Research in Structural Biology, 2020, 2, 89-103.	2.2	2
5	Structure-function relationships underlying the dual N-acetylmuramic and N-acetylglucosamine specificities of the bacterial peptidoglycan deacetylase PdaC. Journal of Biological Chemistry, 2019, 294, 19066-19080.	3.4	15
6	Quick-soaking of crystals reveals unprecedented insights into the catalytic mechanism of glycosyltransferases. Methods in Enzymology, 2019, 621, 261-279.	1.0	6
7	Regulation of Human Hsc70 ATPase and Chaperone Activities by Apg2: Role of the Acidic Subdomain. Journal of Molecular Biology, 2019, 431, 444-461.	4.2	16
8	The Molecular Mechanism of Substrate Recognition and Catalysis of the Membrane Acyltransferase PatA from Mycobacteria. ACS Chemical Biology, 2018, 13, 131-140.	3.4	10
9	Structural Snapshots and Loop Dynamics along the Catalytic Cycle of Glycosyltransferase GpgS. Structure, 2017, 25, 1034-1044.e3.	3.3	15
10	The antibacterial prodrug activator Rv2466c is a mycothiol-dependent reductase in the oxidative stress response of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2017, 292, 13097-13110.	3.4	27
11	Structural Snapshots of αâ€1,3â€Galactosyltransferase with Native Substrates: Insight into the Catalytic Mechanism of Retaining Glycosyltransferases. Angewandte Chemie - International Edition, 2017, 56, 14853-14857.	13.8	24
12	Structural Snapshots of αâ€1,3â€Galactosyltransferase with Native Substrates: Insight into the Catalytic Mechanism of Retaining Glycosyltransferases. Angewandte Chemie, 2017, 129, 15049-15053.	2.0	1
13	Structural basis of phosphatidyl-myo-inositol mannosides biosynthesis in mycobacteria. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1355-1367.	2.4	20
14	The conformational plasticity of glycosyltransferases. Current Opinion in Structural Biology, 2016, 40, 23-32.	5.7	69
15	Structural Basis of Glycogen Biosynthesis Regulation in Bacteria. Structure, 2016, 24, 1613-1622.	3.3	25
16	Structural basis for selective recognition of acyl chains by the membrane-associated acyltransferase PatA. Nature Communications, 2016, 7, 10906.	12.8	23
17	TssA forms a gp6â€ŀike ring attached to the type <scp>VI</scp> secretion sheath. EMBO Journal, 2016, 35, 1613-1627.	7.8	84
18	A Native Ternary Complex Trapped in a Crystal Reveals the Catalytic Mechanism of a Retaining Glycosyltransferase. Angewandte Chemie - International Edition, 2015, 54, 9898-9902.	13.8	35

DAVID ALBESA-JOVé

#	Article	IF	CITATIONS
19	The Redox State Regulates the Conformation of Rv2466c to Activate the Antitubercular Prodrug TP053. Journal of Biological Chemistry, 2015, 290, 31077-31089.	3.4	17
20	Secondary structure reshuffling modulates glycosyltransferase function at the membrane. Nature Chemical Biology, 2015, 11, 16-18.	8.0	44
21	Structural Basis of Chitin Oligosaccharide Deacetylation. Angewandte Chemie - International Edition, 2014, 53, 6882-6887.	13.8	79
22	Structure-function relationships of membrane-associated GT-B glycosyltransferases. Glycobiology, 2014, 24, 108-124.	2.5	80
23	Iridium-catalyzed C–H borylation of pyridines. Organic and Biomolecular Chemistry, 2014, 12, 7318.	2.8	82
24	Rv2466c Mediates the Activation of TP053 To Kill Replicating and Non-replicating <i>Mycobacterium tuberculosis</i> . ACS Chemical Biology, 2014, 9, 1567-1575.	3.4	41
25	Conformational Plasticity of the Essential Membrane-associated Mannosyltransferase PimA from Mycobacteria. Journal of Biological Chemistry, 2013, 288, 29797-29808.	3.4	24
26	Mechanistic Insights into the Retaining Glucosyl-3-phosphoglycerate Synthase from Mycobacteria. Journal of Biological Chemistry, 2012, 287, 24649-24661.	3.4	17
27	Structural Versatility of Pyrene-2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolane) and Pyrene-2,7-bis(4,4,5,5-tetramethyl-[1,3,2]dioxaborolane). Crystal Growth and Design, 2012, 12, 2794-2802.	3.0	24
28	Type VI Secretion System in Pseudomonas aeruginosa. Journal of Biological Chemistry, 2011, 286, 12317-12327.	3.4	150
29	Ligand redox non-innocent behaviour in ruthenium complexes of ethynyl tolans. Inorganica Chimica Acta, 2011, 374, 461-471.	2.4	16
30	Four Distinct Structural Domains in Clostridium difficile Toxin B Visualized Using SAXS. Journal of Molecular Biology, 2010, 396, 1260-1270.	4.2	46
31	The electronic structures of diruthenium complexes containing an oligo(phenylene ethynylene) bridging ligand, and some related molecular structures. Dalton Transactions, 2010, 39, 11605.	3.3	20
32	Structural insights into the molecular organization of the Sâ€layer from <i>Clostridium difficile</i> . Molecular Microbiology, 2009, 71, 1308-1322.	2.5	115
33	Syntheses, structures, two-photon absorption cross-sections and computed second hyperpolarisabilities of quadrupolar A–I€â€"A systems containing E-dimesitylborylethenyl acceptors. Journal of Materials Chemistry, 2009, 19, 7532.	6.7	81
34	The syntheses, structures and redox properties of phosphine-gold(I) and triruthenium-carbonyl cluster derivatives of tolans. Inorganica Chimica Acta, 2008, 361, 1646-1658.	2.4	17
35	Ruthenium Complexes of <i>C,C</i> â€~-Bis(ethynyl)carboranes:  An Investigation of Electronic Interactions Mediated by Spherical Pseudo-aromatic Spacers. Journal of the American Chemical Society, 2008, 130, 3566-3578.	13.7	116
36	The synthesis and liquid crystalline behaviour of alkoxyâ€substituted derivatives of 1,4â€bis(phenylethynyl)benzene. Liquid Crystals, 2008, 35, 119-132.	2.2	9

DAVID ALBESA-JOVé

#	Article	IF	CITATIONS
37	A Solid-State Dehydration Process Associated with a Significant Change in the Topology of Dihydrogen Phosphate Chains, Established from Powder X-ray Diffraction. Crystal Growth and Design, 2008, 8, 3641-3645.	3.0	17
38	The synthesis, structure, and electrochemical properties of Fe(C≡CC≡N)(dppe)Cp and related compounds. Canadian Journal of Chemistry, 2006, 84, 154-163.	1.1	11
39	The synthesis, structure, reactivity and electrochemical properties of ruthenium complexes featuring cyanoacetylide ligands. Inorganica Chimica Acta, 2006, 359, 946-961.	2.4	24
40	Trimetallic complexes featuring Group 10 tetracyanometallate dianions as bridging ligands. Inorganica Chimica Acta, 2006, 359, 3459-3466.	2.4	9
41	Synthesis of new mer,trans-rhodium(III) hydrido-bis(acetylide) complexes: Structure of mer,trans-[(PMe3)3Rh(CC–C6H4-4-NMe2)2H]. Inorganica Chimica Acta, 2006, 359, 2859-2863.	2.4	11
42	Improved syntheses of bis(ethynyl)-para-carboranes, 1,12-(RCC)2-1,12-C2B10H10 and 1,10-(RCC)2-1,10-C2B8H8 (R=H or Me3Si). Journal of Organometallic Chemistry, 2006, 691, 3889-3894.	1.8	12
43	Metal Cluster Terminated "Molecular Wiresâ€+ Journal of Cluster Science, 2006, 17, 65-85.	3.3	28
44	Synthesis, Crystal Structures, Linear and Nonlinear Optical Properties, and Theoretical Studies of (p-R-Phenyl)-, (p-R-Phenylethynyl)-, and (E)-[2-(p-R-Phenyl)ethenyl]dimesitylboranes and Related Compounds. Chemistry - A European Journal, 2006, 12, 2758-2771.	3.3	218
45	Ir-Catalyzed Borylation of CH Bonds in N-Containing Heterocycles: Regioselectivity in the Synthesis of Heteroaryl Boronate Esters. Angewandte Chemie - International Edition, 2006, 45, 489-491.	13.8	206
46	Electronic interactions in bridged bis(cluster) assemblies – a comparison of para-CB10H10C, para-C6H4 and C4 bridges. Comptes Rendus Chimie, 2005, 8, 1883-1896.	0.5	16
47	Synthesis, optical properties, crystal structures and phase behaviour of symmetric, conjugated ethynylarene-based rigid rods with terminal carboxylate groups. Journal of Materials Chemistry, 2005, 15, 690-697.	6.7	40
48	Syntheses and molecular structures of group 8 benzonitrile complexes. Journal of Organometallic Chemistry, 2005, 690, 4908-4919.	1.8	46
49	Challenges in Direct-Space Structure Determination from Powder Diffraction Data: A Molecular Material with Four Independent Molecules in the Asymmetric Unit. ChemPhysChem, 2004, 5, 414-418.	2.1	70
50	Synthesis, optical properties, crystal structures and phase behaviour of selectively fluorinated 1,4-bis(4?-pyridylethynyl)benzenes, 4-(phenylethynyl)pyridines and 9,10-bis(4?-pyridylethynyl)anthracene, and a Zn(NO3)2 coordination polymer. Journal of Materials Chemistry, 2004, 14, 2395.	6.7	57
51	Structural Aspects of the -Polymorph of (E)-4-Formylcinnamic Acid: Structure Determination Directly from Powder Diffraction Data and Elucidation of Structural Disorder from Solid-State NMR. Helvetica Chimica Acta, 2003, 86, 1467-1477.	1.6	23
52	Solid-State Supramolecular Organization, Established Directly from Powder Diffraction Data, and Photoluminescence Efficiency of Rigid-Core Oligothiophene-S,S-dioxides. Journal of the American Chemical Society, 2003, 125, 12277-12283.	13.7	62
53	Recent advances in opportunities for solving molecular crystal structures directly from powder diffraction data: new insights in crystal engineering contexts. CrystEngComm, 2002, 4, 356-367.	2.6	12