Rosa Molfetta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8571909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact on NK cell functions of acute versus chronic exposure to extracellular vesicleâ€associated MICA: Dual role in cancer immunosurveillance. Journal of Extracellular Vesicles, 2022, 11, e12176.	12.2	22
2	NK Cells and Other Cytotoxic Innate Lymphocytes in Colorectal Cancer Progression and Metastasis. International Journal of Molecular Sciences, 2022, 23, 7859.	4.1	10
3	Cereblon regulates NK cell cytotoxicity and migration via Rac1 activation. European Journal of Immunology, 2021, 51, 2607-2617.	2.9	5
4	Immunomodulatory effect of NEDD8-activating enzyme inhibition in Multiple Myeloma: upregulation of NKG2D ligands and sensitization to Natural Killer cell recognition. Cell Death and Disease, 2021, 12, 836.	6.3	13
5	Immune complexes exposed on mast cellâ€derived nanovesicles amplify allergic inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1260-1263.	5.7	18
6	SAMHD1 phosphorylation and cytoplasmic relocalization after human cytomegalovirus infection limits its antiviral activity. PLoS Pathogens, 2020, 16, e1008855.	4.7	12
7	FcεRI Signaling in the Modulation of Allergic Response: Role of Mast Cell-Derived Exosomes. International Journal of Molecular Sciences, 2020, 21, 5464.	4.1	21
8	Bone Marrow Stromal Cell-Derived IL-8 Upregulates PVR Expression on Multiple Myeloma Cells via NF-kB Transcription Factor. Cancers, 2020, 12, 440.	3.7	21
9	CD155: A Multi-Functional Molecule in Tumor Progression. International Journal of Molecular Sciences, 2020, 21, 922.	4.1	58
10	Post-translational Mechanisms Regulating NK Cell Activating Receptors and Their Ligands in Cancer: Potential Targets for Therapeutic Intervention. Frontiers in Immunology, 2019, 10, 2557.	4.8	20
11	Activation of liver X receptor upâ€regulates the expression of the NKG2D ligands MICA and MICB in multiple myeloma through different molecular mechanisms. FASEB Journal, 2019, 33, 9489-9504.	0.5	19
12	The Ubiquitinâ€proteasome pathway regulates Nectin2/CD112 expression and impairs NK cell recognition and killing. European Journal of Immunology, 2019, 49, 873-883.	2.9	28
13	The homeobox transcription factor MEIS2 is a regulator of cancer cell survival and IMiDs activity in Multiple Myeloma: modulation by Bromodomain and Extra-Terminal (BET) protein inhibitors. Cell Death and Disease, 2019, 10, 324.	6.3	11
14	Translating the anti-myeloma activity of Natural Killer cells into clinical application. Cancer Treatment Reviews, 2018, 70, 255-264.	7.7	28
15	NKG2D and Its Ligands: "One for All, All for One― Frontiers in Immunology, 2018, 9, 476.	4.8	165
16	Abnormal regulation of BCR signalling by c-Cbl in chronic lymphocytic leukaemia. Oncotarget, 2018, 9, 32219-32231.	1.8	6
17	Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: Role of HSP70/TLR2/NF-kB axis. OncoImmunology, 2017, 6, e1279372.	4.6	100
18	p38 MAPK differentially controls NK activating ligands at transcriptional and post-transcriptional level on multiple myeloma cells. Oncolmmunology, 2017, 6, e1264564.	4.6	29

Rosa Molfetta

#	Article	IF	CITATIONS
19	Obinutuzumab-mediated high-affinity ligation of FcÎ ³ RIIIA/CD16 primes NK cells for IFNÎ ³ production. Oncolmmunology, 2017, 6, e1290037.	4.6	39
20	3D Microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells. Scientific Reports, 2017, 7, 1093.	3.3	130
21	Innate immune activating ligand SUMOylation affects tumor cell recognition by NK cells. Scientific Reports, 2017, 7, 10445.	3.3	29
22	Regulation of NKG2D-Dependent NK Cell Functions: The Yin and the Yang of Receptor Endocytosis. International Journal of Molecular Sciences, 2017, 18, 1677.	4.1	71
23	Ubiquitin and ubiquitin-like modifiers modulate NK cell-mediated recognition and killing of damaged cells. AIMS Allergy and Immunology, 2017, 1, 164-180.	0.5	0
24	Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of cMYC-IRF4-miR-125b interplay. Journal of Hematology and Oncology, 2016, 9, 134.	17.0	72
25	Regulation of NKG2D Expression and Signaling by Endocytosis. Trends in Immunology, 2016, 37, 790-802.	6.8	46
26	Nitric oxide donors increase PVR/CD155 DNAM-1 ligand expression in multiple myeloma cells: role of DNA damage response activation. BMC Cancer, 2015, 15, 17.	2.6	54
27	Genotoxic Stress Induces Senescence-Associated ADAM10-Dependent Release of NKG2D MIC Ligands in Multiple Myeloma Cells. Journal of Immunology, 2015, 195, 736-748.	0.8	85
28	NK cells and interferons. Cytokine and Growth Factor Reviews, 2015, 26, 113-120.	7.2	110
29	Ubiquitin-dependent endocytosis of NKG2D-DAP10 receptor complexes activates signaling and functions in human NK cells. Science Signaling, 2015, 8, ra108.	3.6	50
30	Anti-CD20 Therapy Acts via Fcl ³ RIIIA to Diminish Responsiveness of Human Natural Killer Cells. Cancer Research, 2015, 75, 4097-4108.	0.9	46
31	The IMiDs targets IKZF-1/3 and IRF4 as novel negative regulators of NK cell-activating ligands expression in multiple myeloma. Oncotarget, 2015, 6, 23609-23630.	1.8	78
32	Regulation of Fc Receptor Endocytic Trafficking by Ubiquitination. Frontiers in Immunology, 2014, 5, 449.	4.8	37
33	câ€Cbl regulates MICA―but not ULBP2â€induced NKG2D downâ€modulation in human NK cells. European Journal of Immunology, 2014, 44, 2761-2770.	2.9	35
34	The Cbl family of ubiquitin ligases regulates FcεRI expression and mast cell activation. Advances in Bioscience and Biotechnology (Print), 2013, 04, 1063-1072.	0.7	0
35	PIP2-dependent regulation of Munc13-4 endocytic recycling: impact on the cytolytic secretory pathway. Blood, 2012, 119, 2252-2262.	1.4	27
36	Sykâ€dependent regulation of <scp>H</scp> rs phosphorylation and ubiquitination upon <scp>F</scp> clµ <scp>RI</scp> engagement: Impact on <scp>H</scp> rs membrane/cytosol localization. European Journal of Immunology, 2012, 42, 2744-2753.	2.9	16

ROSA MOLFETTA

#	Article	IF	CITATIONS
37	Cbl Family Proteins: Balancing FcεRl-Mediated Mast Cell and Basophil Activation. International Archives of Allergy and Immunology, 2011, 156, 16-26.	2.1	7
38	Ubiquitination and endocytosis of the high affinity receptor for IgE. Molecular Immunology, 2010, 47, 2427-2434.	2.2	23
39	Lipid Raft-Dependent FcεRI Ubiquitination Regulates Receptor Endocytosis through the Action of Ubiquitin Binding Adaptors. PLoS ONE, 2009, 4, e5604.	2.5	28
40	The Adaptor Molecule CIN85 Regulates Syk Tyrosine Kinase Level by Activating the Ubiquitin-Proteasome Degradation Pathway. Journal of Immunology, 2007, 179, 2089-2096.	0.8	20
41	Negative signals from FcεRI engagement attenuate mast cell functions. Archivum Immunologiae Et Therapiae Experimentalis, 2007, 55, 219-229.	2.3	17
42	CIN85 Regulates the Ligand-Dependent Endocytosis of the IgE Receptor: A New Molecular Mechanism to Dampen Mast Cell Function. Journal of Immunology, 2005, 175, 4208-4216.	0.8	45
43	Activation of Syk Tyrosine Kinase Is Required for c-Cbl-mediated Ubiquitination of FcεRI and Syk in RBL Cells. Journal of Biological Chemistry, 2002, 277, 36940-36947.	3.4	73
44	NGF-dependent and tissue-specific transcription ofvgfis regulated by a CREB-p300 and bHLH factor interaction. FEBS Letters, 2002, 510, 50-56.	2.8	24
45	Ubiquitination and degradation of Syk and ZAP-70 protein tyrosine kinases in human NK cells upon CD16 engagement. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9611-9616.	7.1	52
46	Tyrosine kinase-dependent ubiquitination of CD16 ζ subunit in human NK cells following receptor engagement. European Journal of Immunology, 1999, 29, 3179-3187.	2.9	21