Marco Sacchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8571721/publications.pdf

Version: 2024-02-01

414414 516710 1,077 44 16 32 citations h-index g-index papers 47 47 47 721 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	State-Resolved Gas-Surface Reactivity of Methane in the Symmetric C-H Stretch Vibration on Ni(100). Physical Review Letters, 2005, 94, .	7.8	150
2	Residual Chlorine Induced Cationic Active Species on a Porous Copper Electrocatalyst for Highly Stable Electrochemical CO ₂ Reduction to C ₂₊ . Angewandte Chemie - International Edition, 2021, 60, 11487-11493.	13.8	145
3	State-Resolved Reactivity of CH4(2ν3) on Pt(111) and Ni(111): Effects of Barrier Height and Transition State Locationâ€. Journal of Physical Chemistry A, 2007, 111, 12679-12683.	2.5	102
4	Quantum Biology: An Update and Perspective. Quantum Reports, 2021, 3, 80-126.	1.3	74
5	Mode-specific reactivity of mml:math xmins:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext> CH </mml:mtext> </mml:mrow> <mml:mn> <td>4<td>n>ist</td></td></mml:mn></mml:msub></mml:mrow>	4 <td>n>ist</td>	n>ist

#	Article	IF	Citations
19	Combined Diffraction and Density Functional Theory Calculations of Halogen-Bonded Cocrystal Monolayers. Langmuir, 2013, 29, 14903-14911.	3.5	15
20	Residual Chlorine Induced Cationic Active Species on a Porous Copper Electrocatalyst for Highly Stable Electrochemical CO 2 Reduction to C 2+. Angewandte Chemie, 2021, 133, 11588-11594.	2.0	15
21	Jumping, Rotating, and Flapping: The Atomic-Scale Motion of Thiophene on Cu(111). Journal of Physical Chemistry Letters, 2013, 4, 1953-1958.	4.6	14
22	Self-Organized Overlayers Formed by Alanine on Cu{311} Surfaces. Journal of Physical Chemistry C, 2014, 118, 18589-18603.	3.1	14
23	Mass Transport in Surface Diffusion of van der Waals Bonded Systems: Boosted by Rotations?. Journal of Physical Chemistry Letters, 2016, 7, 4819-4824.	4.6	14
24	Ballistic Diffusion in Polyaromatic Hydrocarbons on Graphite. Journal of Physical Chemistry Letters, 2016, 7, 5285-5290.	4.6	13
25	Spontaneous Local Symmetry Breaking: A Conformational Study of Glycine on Cu{311}. Journal of Physical Chemistry C, 2015, 119, 13041-13049.	3.1	12
26	The dynamics of benzene on Cu(111): a combined helium spin echo and dispersion-corrected DFT study into the diffusion of physisorbed aromatics on metal surfaces. Faraday Discussions, 2017, 204, 471-485.	3.2	11
27	Supramolecular self-assembled network formation containing Nâc Br halogen bonds in physisorbed overlayers. Physical Chemistry Chemical Physics, 2014, 16, 19608-19617.	2.8	10
28	Simulating the complete pyrolysis and charring process of phenol–formaldehyde resins using reactive molecular dynamics. Journal of Materials Science, 2022, 57, 7600-7620.	3.7	10
29	Electronic Structure and Bonding of an Ionic Molecular Adsorbate: c-C5H5 on $Cu\{111\}$. Journal of Physical Chemistry C, 2011, 115, 16134-16141.	3.1	9
30	Ultrafast molecular transport on carbon surfaces: The diffusion of ammonia on graphite. Carbon, 2018, 126, 23-30.	10.3	9
31	Determining the Relative Structural Relevance of Halogen and Hydrogen Bonds in Self-Assembled Monolayers. Journal of Physical Chemistry C, 2021, 125, 27784-27792.	3.1	9
32	Repulsion-Induced Surface-Migration by Ballistics and Bounce. Journal of Physical Chemistry Letters, 2015, 6, 4093-4098.	4.6	8
33	The dehydrogenation of butane on metal-free graphene. Journal of Colloid and Interface Science, 2022, 619, 377-387.	9.4	8
34	The crystalline structure of the phenazine overlayer physisorbed on a graphite surface. Molecular Physics, 2013, 111, 3823-3830.	1.7	6
35	Coverage-Dependent Structural Evolution in the Interaction of NO ₂ with Au{111}. Journal of Physical Chemistry C, 2012, 116, 5637-5645.	3.1	5
36	"Pop-On and Pop-Off―Surface Chemistry of Alanine on Ni{111} under Elevated Hydrogen Pressures. Journal of Physical Chemistry C, 2018, 122, 7720-7730.	3.1	5

#	Article	IF	CITATIONS
37	Alkali metal adsorption on metal surfaces: new insights from new tools. Physical Chemistry Chemical Physics, 2021, 23, 7822-7829.	2.8	5
38	Cavity ring-down spectroscopy of jet-cooled silane isotopologues in the Si–H stretch overtone region. Journal of Chemical Physics, 2007, 127, 244301.	3.0	4
39	Dipole-Moment Reversal in a Polar Organic Monolayer Probed by Sum and Difference Frequency Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 6692-6700.	3.1	4
40	Halogen Bonding in Bicomponent Monolayers: Self-Assembly of a Homologous Series of Iodinated Perfluoroalkanes with Bipyridine. Langmuir, 2021, 37, 627-635.	3.5	3
41	Supramolecular systems at liquid–solid interfaces: general discussion. Faraday Discussions, 2017, 204, 271-295.	3.2	2
42	Energy landscapes and dynamics of glycine on Cu(110). Physical Chemistry Chemical Physics, 2017, 19, 16600-16605.	2.8	1
43	Innentitelbild: Quantum Influences in the Diffusive Motion of Pyrrole on Cu(111) (Angew. Chem.) Tj ETQq1 1 0.3	784314 rg 2.0	BT Overlock
44	Probing properties of molecule-based interface systems: general discussion and Discussion of the Concluding Remarks. Faraday Discussions, 2017, 204, 503-530.	3.2	0