
MarÃ-a Isabel Fariñas Gómez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8571370/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acute lymphoblastic leukemia cells are able to infiltrate the brain subventricular zone stem cell niche and impair neurogenesis. Haematologica, 2022, , .	3.5	0
2	Adult Neural Stem Cells Are Alerted by Systemic Inflammation through TNF-α Receptor Signaling. Cell Stem Cell, 2021, 28, 285-299.e9.	11.1	80
3	Behavioral evaluation of aging in experimental animals. , 2021, , 553-564.		1
4	NT3/TrkC Pathway Modulates the Expression of UCP-1 and Adipocyte Size in Human and Rodent Adipose Tissue. Frontiers in Endocrinology, 2021, 12, 630097.	3.5	9
5	Vascular Senescence: A Potential Bridge Between Physiological Aging and Neurogenic Decline. Frontiers in Neuroscience, 2021, 15, 666881.	2.8	9
6	Cell population analysis of the adult murine subependymal neurogenic lineage by flow cytometry. STAR Protocols, 2021, 2, 100425.	1.2	8
7	High-resolution mouse subventricular zone stem-cell niche transcriptome reveals features of lineage, anatomy, and aging. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31448-31458.	7.1	39
8	Spanish Cell Therapy Network (TerCel): 15 years of successful collaborative translational research. Cytotherapy, 2020, 22, 1-5.	0.7	6
9	NO Hemodynamic Speed Limit for Hippocampal Neurogenesis. Neuron, 2019, 103, 752-754.	8.1	0
10	Physiological Interactions between Microglia and Neural Stem Cells in the Adult Subependymal Niche. Neuroscience, 2019, 405, 77-91.	2.3	16
11	Interaction between Angiotensin Type 1, Type 2, and Mas Receptors to Regulate Adult Neurogenesis in the Brain Ventricular–Subventricular Zone. Cells, 2019, 8, 1551.	4.1	22
12	Selective α-Synuclein Knockdown in Monoamine Neurons by Intranasal Oligonucleotide Delivery: Potential Therapy for Parkinson's Disease. Molecular Therapy, 2018, 26, 550-567.	8.2	97
13	Synaptic Regulator α-Synuclein in Dopaminergic Fibers Is Essentially Required for the Maintenance of Subependymal Neural Stem Cells. Journal of Neuroscience, 2018, 38, 814-825.	3.6	16
14	p27Kip1 regulates alpha-synuclein expression. Oncotarget, 2018, 9, 16368-16379.	1.8	6
15	Role of p27Kip1 as a transcriptional regulator. Oncotarget, 2018, 9, 26259-26278.	1.8	32
16	Abstract 3015: Precise investigation of cancer stem cells in mouse glioblastoma. , 2018, , .		0
17	Cyclin-Dependent Kinase 4 Regulates Adult Neural Stem Cell Proliferation and Differentiation in Response to Insulin. Stem Cells, 2017, 35, 2403-2416.	3.2	29
18	Evolutionary conserved role of eukaryotic translation factor eIF5A in the regulation of actin-nucleating formins. Scientific Reports, 2017, 7, 9580.	3.3	11

#	Article	IF	CITATIONS
19	Building Bridges through Science. Neuron, 2017, 96, 730-735.	8.1	2
20	Characterization and isolation of immature neurons of the adult mouse piriform cortex. Developmental Neurobiology, 2016, 76, 748-763.	3.0	23
21	Fetal neurogenesis: breathe <scp>HIF</scp> you can. EMBO Journal, 2016, 35, 901-903.	7.8	2
22	Isolation, culture and analysis of adult subependymal neural stem cells. Differentiation, 2016, 91, 28-41.	1.9	47
23	Stable and Efficient Genetic Modification of Cells in the Adult Mouse V-SVZ for the Analysis of Neural Stem Cell Autonomous and Non-autonomous Effects. Journal of Visualized Experiments, 2016, , 53282.	0.3	1
24	p73 is required for ependymal cell maturation and neurogenic <scp>SVZ</scp> cytoarchitecture. Developmental Neurobiology, 2016, 76, 730-747.	3.0	42
25	Regulation of the p19 Arf /p53 pathway by histone acetylation underlies neural stem cell behavior in senescenceâ€prone SAMP8 mice. Aging Cell, 2015, 14, 453-462.	6.7	22
26	The Cyclin-Dependent Kinase Inhibitor p27kip1 Regulates Radial Stem Cell Quiescence and Neurogenesis in the Adult Hippocampus. Stem Cells, 2015, 33, 219-229.	3.2	53
27	Lewy body extracts from Parkinson disease brains trigger αâ€synuclein pathology and neurodegeneration in mice and monkeys. Annals of Neurology, 2014, 75, 351-362.	5.3	521
28	Endothelial NT-3 Delivered by Vasculature and CSF Promotes Quiescence of Subependymal Neural Stem Cells through Nitric Oxide Induction. Neuron, 2014, 83, 572-585.	8.1	156
29	MT5-MMP regulates adult neural stem cell functional quiescence through the cleavage of N-cadherin. Nature Cell Biology, 2014, 16, 629-638.	10.3	85
30	Transcriptional repression of Bmp2 by p21Waf1/Cip1 links quiescence to neural stem cell maintenance. Nature Neuroscience, 2013, 16, 1567-1575.	14.8	64
31	The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors. Nature Communications, 2013, 4, 2880.	12.8	54
32	Cyclin-Dependent Kinase Inhibitor p21 Controls Adult Neural Stem Cell Expansion by Regulating Sox2 Gene Expression. Cell Stem Cell, 2013, 12, 88-100.	11.1	164
33	Symmetric Expansion of Neural Stem Cells from the Adult Olfactory Bulb Is Driven by Astrocytes Via WNT7A. Stem Cells, 2012, 30, 2796-2809.	3.2	31
34	IRS2 signalling is required for the development of a subset of sensory spinal neurons. European Journal of Neuroscience, 2012, 35, 341-352.	2.6	8
35	Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature, 2011, 475, 381-385.	27.8	247
36	Vulnerability of peripheral catecholaminergic neurons to MPTP is not regulated by α-synuclein. Neurobiology of Disease, 2010, 38, 92-103.	4.4	10

#	Article	IF	CITATIONS
37	Ikarosâ€l couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons. Journal of Comparative Neurology, 2010, 518, 329-351.	1.6	36
38	Perivascular nerve fiber α-synuclein regulates contractility of mouse aorta: A link to autonomic dysfunction in Parkinson's disease. Neurochemistry International, 2010, 56, 991-998.	3.8	13
39	Prosurvival effect of human wild-type α-synuclein on MPTP-induced toxicity to central but not peripheral catecholaminergic neurons isolated from transgenic mice. Neuroscience, 2010, 167, 261-276.	2.3	9
40	Signaling through BMPR-IA Regulates Quiescence and Long-Term Activity of Neural Stem Cells in the Adult Hippocampus. Cell Stem Cell, 2010, 7, 78-89.	11.1	417
41	Regulated Segregation of Kinase Dyrk1A during Asymmetric Neural Stem Cell Division Is Critical for EGFR-Mediated Biased Signaling. Cell Stem Cell, 2010, 7, 367-379.	11.1	71
42	BDNF is essentially required for the early postnatal survival of nociceptors. Developmental Biology, 2010, 339, 465-476.	2.0	27
43	Telomere Shortening in Neural Stem Cells Disrupts Neuronal Differentiation and Neuritogenesis. Journal of Neuroscience, 2009, 29, 14394-14407.	3.6	163
44	Metalloproteinase MT5-MMP is an essential modulator of neuro-immune interactions in thermal pain stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16451-16456.	7.1	69
45	Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nature Neuroscience, 2009, 12, 1534-1541.	14.8	157
46	Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nature Neuroscience, 2009, 12, 1514-1523.	14.8	206
47	Cell expression of GDAP1 in the nervous system and pathogenesis of Charcotâ€Marieâ€Tooth type 4A disease. Journal of Cellular and Molecular Medicine, 2008, 12, 679-689.	3.6	61
48	Satb2 Regulates Callosal Projection Neuron Identity in the Developing Cerebral Cortex. Neuron, 2008, 57, 364-377.	8.1	581
49	A combined ex/in vivo assay to detect effects of exogenously added factors in neural stem cells. Nature Protocols, 2007, 2, 849-859.	12.0	87
50	SATB2 Is a Multifunctional Determinant of Craniofacial Patterning and Osteoblast Differentiation. Cell, 2006, 125, 971-986.	28.9	458
51	Abnormal development of pacinian corpuscles in double trkB;trkC knockout mice. Neuroscience Letters, 2006, 410, 157-161.	2.1	13
52	Pigment epithelium–derived factor is a niche signal for neural stem cell renewal. Nature Neuroscience, 2006, 9, 331-339.	14.8	427
53	Selective Glial Cell Line-Derived Neurotrophic Factor Production in Adult Dopaminergic Carotid Body Cells In Situ and after Intrastriatal Transplantation. Journal of Neuroscience, 2005, 25, 4091-4098.	3.6	62
54	BDNF, but not NT-4, is necessary for normal development of Meissner corpuscles. Neuroscience Letters, 2005, 377, 12-15.	2.1	39

#	Article	IF	CITATIONS
55	Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development (Cambridge), 2004, 131, 4059-4070.	2.5	133
56	α-Synuclein Expression Levels Do Not Significantly Affect Proteasome Function and Expression in Mice and Stably Transfected PC12 Cell Lines. Journal of Biological Chemistry, 2004, 279, 52984-52990.	3.4	49
57	Stressor-related impairment of synaptic transmission in hippocampal slices from α-synuclein knockout mice. European Journal of Neuroscience, 2004, 20, 3085-3091.	2.6	18
58	Erbb2 regulates neuromuscular synapse formation and is essential for muscle spindle development. Development (Cambridge), 2003, 130, 2291-2301.	2.5	84
59	Regulation of neurogenesis by neurotrophins in developing spinal sensory ganglia. Brain Research Bulletin, 2002, 57, 809-816.	3.0	48
60	Sensing life: regulation of sensory neuron survival by neurotrophins. Cellular and Molecular Life Sciences, 2002, 59, 1787-1802.	5.4	61
61	Spatial Shaping of Cochlear Innervation by Temporally Regulated Neurotrophin Expression. Journal of Neuroscience, 2001, 21, 6170-6180.	3.6	279
62	Mice Lacking α-Synuclein Display Functional Deficits in the Nigrostriatal Dopamine System. Neuron, 2000, 25, 239-252.	8.1	1,573
63	Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs. Journal of Comparative Neurology, 1999, 409, 13-24.	1.6	102
64	Neurotrophin actions during the development of the peripheral nervous system. Microscopy Research and Technique, 1999, 45, 233-242.	2.2	87
65	NT-3, like NGF, Is Required for Survival of Sympathetic Neurons, but Not Their Precursors. Developmental Biology, 1999, 210, 411-427.	2.0	127
66	Wnt3a-/like phenotype and limb deficiency in Lef1-/-Tcf1-/- mice. Genes and Development, 1999, 13, 709-717.	5.9	426
67	Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs. , 1999, 409, 13.		1
68	GFRα1 Is an Essential Receptor Component for GDNF in the Developing Nervous System and Kidney. Neuron, 1998, 21, 53-62.	8.1	513
69	Characterization of Neurotrophin and Trk Receptor Functions in Developing Sensory Ganglia. Neuron, 1998, 21, 325-334.	8.1	178
70	Effects of neurotrophin and neurotrophin receptor disruption on the afferent inner ear innervation. Seminars in Cell and Developmental Biology, 1997, 8, 277-284.	5.0	76
71	The role of neurotrophic factors in regulating the development of inner ear innervation. Trends in Neurosciences, 1997, 20, 159-164.	8.6	190
72	Brain-derived neurotrophic factor regulates maturation of the DARPP-32 phenotype in striatal medium spiny neurons: studies in vivo and in vitro. Neuroscience, 1997, 79, 509-516.	2.3	71

#	Article	IF	CITATIONS
73	Lack of Neurotrophin 3 Causes Losses of Both Classes of Spiral Ganglion Neurons in the Cochlea in a Region-Specific Fashion. Journal of Neuroscience, 1997, 17, 6213-6225.	3.6	156
74	A Reciprocal Cell–Cell Interaction Mediated by NT-3 and Neuregulins Controls the Early Survival and Development of Sympathetic Neuroblasts. Neuron, 1996, 16, 515-527.	8.1	129
75	Lack of Neurotrophin-3 Results in Death of Spinal Sensory Neurons and Premature Differentiation of Their Precursors. Neuron, 1996, 17, 1065-1078.	8.1	222
76	Neurotrophin-3 Is a Survival FactorIn Vivofor Early Mouse Trigeminal Neurons. Journal of Neuroscience, 1996, 16, 7661-7669.	3.6	85
77	Neurotrophic factors and their receptors: implications of genetic studies. Seminars in Neuroscience, 1996, 8, 133-143.	2.2	30
78	Renal and neuronal abnormalities in mice lacking GDNF. Nature, 1996, 382, 76-79.	27.8	1,212
79	Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development Genes and Development, 1996, 10, 1382-1394.	5.9	381
80	Neurotrophins: Essential Functions In Vivo Characterized by Targeted Gene Mutations. , 1995, , 315-333.		2
81	Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice Genes and Development, 1994, 8, 2691-2703.	5.9	859
82	Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature, 1994, 369, 658-661.	27.8	621
83	The Presynaptic Cell Determines the Number of Synapses in the Drosophila Optic Ganglia. European Journal of Neuroscience, 1994, 6, 1423-1431.	2.6	22
84	Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell, 1994, 76, 989-999.	28.9	1,005
85	Chandelier cells in the hippocampal formation of the rat: The entorhinal area and subicular complex. Journal of Comparative Neurology, 1993, 337, 151-167.	1.6	32
86	High resolution labeling of cholinergic nerve terminals using a specific fully active biotinylated botulinum neurotoxin type A. Journal of Neuroscience Research, 1993, 36, 635-645.	2.9	9
87	Calcium channel antagonist omega-conotoxin binds to intramembrane particles of isolated nerve terminals. Neuroscience, 1993, 54, 745-752.	2.3	9
88	Omega-conotoxin differentially blocks acetylcholine and adenosine triphosphate releases from Torpedo synaptosomes. Neuroscience, 1992, 47, 641-648.	2.3	33
89	The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology, 1992, 39, 563-607.	5.7	842
90	Patterns of synaptic input on corticocortical and corticothalamic cells in the cat visual cortex. I. The cell body. Journal of Comparative Neurology, 1991, 304, 53-69.	1.6	91

#	Article	lF	CITATIONS
91	Patterns of synaptic input on corticocortical and corticothalamic cells in the cat visual cortex. II. The axon initial segment. Journal of Comparative Neurology, 1991, 304, 70-77.	1.6	126
92	Glutamate-positive neurons and axon terminals in cat sensory cortex: A correlative light and electron microscopic study. Journal of Comparative Neurology, 1989, 290, 141-153.	1.6	59
93	Ultrastructure of putative migrating cells in the cerebral cortex ofLacerta galloti. Journal of Morphology, 1986, 189, 189-197.	1.2	42