Young-jun Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8570526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science, 2022, 375, 449-454.	12.6	108
2	Structure-based design of stabilized recombinant influenza neuraminidase tetramers. Nature Communications, 2022, 13, 1825.	12.8	21
3	Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. Science Translational Medicine, 2022, 14, eabn1252.	12.4	68
4	Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein. Cell, 2022, 185, 2279-2291.e17.	28.9	25
5	Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature, 2021, 592, 623-628.	27.8	180
6	Design of multi-scale protein complexes by hierarchical building block fusion. Nature Communications, 2021, 12, 2294.	12.8	48
7	Structural basis for broad coronavirus neutralization. Nature Structural and Molecular Biology, 2021, 28, 478-486.	8.2	152
8	Generation of ordered protein assemblies using rigid three-body fusion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
9	SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature, 2021, 597, 97-102.	27.8	385
10	Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies. Nature, 2021, 598, 342-347.	27.8	230
11	Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell, 2020, 183, 1024-1042.e21.	28.9	1,195
12	De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 2020, 370, 426-431.	12.6	464
13	Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 2020, 583, 290-295.	27.8	1,695
14	Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 2020, 181, 281-292.e6.	28.9	6,979
15	Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. ELife, 2020, 9, .	6.0	123
16	Suppressor Mutations in Type II Secretion Mutants of Vibrio cholerae: Inactivation of the VesC Protease. MSphere, 2020, 5, .	2.9	2
17	Cryo-EM Structure of Nipah Virus Fusion Glycoprotein in Complex with a Monoclonal Antibody Reveals Mechanism of Neutralization. Microscopy and Microanalysis, 2019, 25, 1328-1329.	0.4	0
18	Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell, 2019, 176, 1026-1039.e15.	28.9	558

Young-jun Park

#	Article	IF	CITATIONS
19	Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Nature Structural and Molecular Biology, 2019, 26, 1151-1157.	8.2	218
20	An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections. Nature Structural and Molecular Biology, 2019, 26, 980-987.	8.2	69
21	Structure of the type VI secretion system TssK–TssF–TssG baseplate subcomplex revealed by cryo-electron microscopy. Nature Communications, 2018, 9, 5385.	12.8	37
22	Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell, 2018, 175, 1380-1392.e14.	28.9	109
23	Hexamers of the Type II Secretion ATPase GspE from Vibrio cholerae with Increased ATPase Activity. Structure, 2013, 21, 1707-1717.	3.3	60
24	Crystal structure of a heterodimer of editosome interaction proteins in complex with two copies of a cross-reacting nanobody. Nucleic Acids Research, 2012, 40, 1828-1840.	14.5	35
25	Explorations of linked editosome domains leading to the discovery of motifs defining conserved pockets in editosome OB-folds. Journal of Structural Biology, 2012, 180, 362-373.	2.8	6
26	The structure of the C-terminal domain of the largest editosome interaction protein and its role in promoting RNA binding by RNA-editing ligase L2. Nucleic Acids Research, 2012, 40, 6966-6977.	14.5	19
27	Structures of a key interaction protein from the Trypanosoma brucei editosome in complex with single domain antibodies. Journal of Structural Biology, 2011, 174, 124-136.	2.8	27
28	A Protein-Protein Interaction Map of Trypanosome â^1⁄420S Editosomes. Journal of Biological Chemistry, 2010, 285, 5282-5295.	3.4	46
29	Histone chaperone specificity in Rtt109 activation. Nature Structural and Molecular Biology, 2008, 15, 957-964.	8.2	62
30	Histone chaperones in nucleosome eviction and histone exchange. Current Opinion in Structural Biology, 2008, 18, 282-289.	5.7	175
31	A β-Hairpin Comprising the Nuclear Localization Sequence Sustains the Self-associated States of Nucleosome Assembly Protein 1. Journal of Molecular Biology, 2008, 375, 1076-1085.	4.2	43
32	A Thermodynamic Model for Nap1-Histone Interactions. Journal of Biological Chemistry, 2008, 283, 32412-32418.	3.4	83
33	Structure and function of nucleosome assembly proteinsThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology 2006 84 549-549	2.0	133
34	The structure of nucleosome assembly protein 1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1248-1253.	7.1	178
35	Nucleosome Assembly Protein 1 Exchanges Histone H2A-H2B Dimers and Assists Nucleosome Sliding*. Journal of Biological Chemistry, 2005, 280, 1817-1825.	3.4	159
36	A New Fluorescence Resonance Energy Transfer Approach Demonstrates That the Histone Variant H2AZ Stabilizes the Histone Octamer within the Nucleosome. Journal of Biological Chemistry, 2004, 279, 24274-24282.	3.4	193

#	Article	IF	CITATIONS
37	Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO Journal, 2004, 23, 3314-3324.	7.8	181
38	Preferential Binding of the Histone (H3-H4)2 Tetramer by NAP1 Is Mediated by the Amino-terminal Histone Tails. Journal of Biological Chemistry, 2003, 278, 44574-44583.	3.4	98