Soldano Ferrone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8570171/publications.pdf

Version: 2024-02-01

206 papers 14,088 citations

65 h-index 24179 110 g-index

220 all docs 220 docs citations

times ranked

220

17193 citing authors

#	Article	IF	CITATIONS
1	Immune checkpoint inhibitors for the treatment of melanoma. Expert Opinion on Biological Therapy, 2022, 22, 563-576.	1.4	10
2	Canine Melanoma Immunology and Immunotherapy: Relevance of Translational Research. Frontiers in Veterinary Science, 2022, 9, 803093.	0.9	4
3	Human Leukocyte Antigen Class I Antigen-Processing Machinery Upregulation by Anticancer Therapies in the Era of Checkpoint Inhibitors. JAMA Oncology, 2022, 8, 462.	3.4	22
4	Differential role of HLA-A and HLA-B, C expression levels as prognostic markers in colon and rectal cancer. , 2022, 10, e004115.		9
5	HLA Class I Downregulation in Progressing Metastases of Melanoma Patients Treated With Ipilimumab. Pathology and Oncology Research, 2022, 28, 1610297.	0.9	5
6	Antigen mimicry as an effective strategy to induce CSPG4-targeted immunity in dogs with oral melanoma: a veterinary trial., 2022, 10, e004007.		7
7	Abstract 2812: CSPG4-specific CAR.CIK lymphocyte-based immunotherapy to eliminate HLA class I-defective melanoma tumors. Cancer Research, 2022, 82, 2812-2812.	0.4	O
8	Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression. Nature Communications, 2022, 13 , .	5.8	17
9	Tumor Microenvironment Immune Response in Pancreatic Ductal Adenocarcinoma Patients Treated With Neoadjuvant Therapy. Journal of the National Cancer Institute, 2021, 113, 182-191.	3.0	49
10	The HDAC Inhibitor Domatinostat Promotes Cell-Cycle Arrest, Induces Apoptosis, and Increases Immunogenicity of Merkel Cell Carcinoma Cells. Journal of Investigative Dermatology, 2021, 141, 903-912.e4.	0.3	31
11	B7-H3: An Attractive Target for Antibody-based Immunotherapy. Clinical Cancer Research, 2021, 27, 1227-1235.	3.2	162
12	The SPPL3-Defined Glycosphingolipid Repertoire Orchestrates HLA Class I-Mediated Immune Responses. Immunity, 2021, 54, 132-150.e9.	6.6	52
13	B7-H3 targeted antibody-based immunotherapy of malignant diseases. Expert Opinion on Biological Therapy, 2021, 21, 587-602.	1.4	16
14	A monocentric phase I study of vemurafenib plus cobimetinib plus PEG-interferon (VEMUPLINT) in advanced melanoma patients harboring the V600BRAF mutation. Journal of Translational Medicine, 2021, 19, 17.	1.8	6
15	Modifications to the Framework Regions Eliminate Chimeric Antigen Receptor Tonic Signaling. Cancer Immunology Research, 2021, 9, 441-453.	1.6	25
16	Spatial Analysis and Clinical Significance of HLA Class-I and Class-II Subunit Expression in Non–Small Cell Lung Cancer. Clinical Cancer Research, 2021, 27, 2837-2847.	3.2	17
17	Proteomic profile of melanoma cellâ€derived small extracellular vesicles in patients' plasma: a potential correlate of melanoma progression. Journal of Extracellular Vesicles, 2021, 10, e12063.	5.5	38
18	Preclinical Evaluation of B7-H3–specific Chimeric Antigen Receptor T Cells for the Treatment of Acute Myeloid Leukemia. Clinical Cancer Research, 2021, 27, 3141-3153.	3.2	45

#	Article	IF	Citations
19	Disulfiram Acts as a Potent Radio-Chemo Sensitizer in Head and Neck Squamous Cell Carcinoma Cell Lines and Transplanted Xenografts. Cells, 2021, 10, 517.	1.8	20
20	Targeting Radiation-Resistant Prostate Cancer Stem Cells by B7-H3 CAR T Cells. Molecular Cancer Therapeutics, 2021, 20, 577-588.	1.9	40
21	A Pan-Histone Deacetylase Inhibitor Enhances the Antitumor Activity of B7-H3–Specific CAR T Cells in Solid Tumors. Clinical Cancer Research, 2021, 27, 3757-3771.	3.2	25
22	High TIL, HLA, and Immune Checkpoint Expression in Conventional High-Grade and Dedifferentiated Chondrosarcoma and Poor Clinical Course of the Disease. Frontiers in Oncology, 2021, 11, 598001.	1.3	3
23	Cancer Stem Cells Are Possible Key Players in Regulating Anti-Tumor Immune Responses: The Role of Immunomodulating Molecules and MicroRNAs. Cancers, 2021, 13, 1674.	1.7	9
24	Human Hepatitis B Virus Negatively Impacts the Protective Immune Crosstalk Between Natural Killer and Dendritic Cells. Hepatology, 2021, 74, 550-565.	3.6	12
25	CAR T Cell-Based Immunotherapy for the Treatment of Glioblastoma. Frontiers in Neuroscience, 2021, 15, 662064.	1.4	80
26	Defective HLA Class I Expression and Patterns of Lymphocyte Infiltration in Chordoma Tumors. Clinical Orthopaedics and Related Research, 2021, 479, 1373-1382.	0.7	11
27	A vision of immuno-oncology: the Siena think tank of the Italian network for tumor biotherapy (NIBIT) foundation. Journal of Experimental and Clinical Cancer Research, 2021, 40, 240.	3.5	3
28	Radiotherapy to Enhance Chimeric Antigen Receptor T-Cell Therapeutic Efficacy in Solid Tumors. JAMA Oncology, 2021, 7, 1051.	3.4	25
29	HLA class I antigen processing machinery defects in antitumor immunity and immunotherapy. Trends in Cancer, 2021, 7, 1089-1101.	3.8	32
30	CD16â€158â€valine chimeric receptor T cells overcome the resistance of KRASâ€mutated colorectal carcinoma cells to cetuximab. International Journal of Cancer, 2020, 146, 2531-2538.	2.3	15
31	<i>In vitro</i> elimination of epidermal growth factor receptorâ€overexpressing cancer cells by CD32Aâ€chimeric receptor T cells in combination with cetuximab or panitumumab. International Journal of Cancer, 2020, 146, 236-247.	2.3	30
32	Melanoma cell-derived exosomes in plasma of melanoma patients suppress functions of immune effector cells. Scientific Reports, 2020, 10, 92.	1.6	122
33	Peritumoral Immune Infiltrate as a Prognostic Biomarker in Thin Melanoma. Frontiers in Immunology, 2020, 11, 561390.	2.2	12
34	NK-Cell-Mediated Targeting of Various Solid Tumors Using a B7-H3 Tri-Specific Killer Engager In Vitro and In Vivo. Cancers, 2020, 12, 2659.	1.7	54
35	Perspectives in melanoma: meeting report from the "Melanoma Bridge―(December 5th–7th, 2019,) Tj ET	Qql _{1.8} 1 0.7	84314 rgBT
36	CSPG4-Specific CAR.CIK Lymphocytes as a Novel Therapy for the Treatment of Multiple Soft-Tissue Sarcoma Histotypes. Clinical Cancer Research, 2020, 26, 6321-6334.	3.2	24

#	Article	IF	Citations
37	Improving the Clinical Significance of Preclinical Immunotherapy Studies through Incorporating Tumor Microenvironment–like Conditions. Clinical Cancer Research, 2020, 26, 4448-4453.	3.2	14
38	Role of the anatomic site in the association of HLA class I antigen expression level in metastases with clinical response to ipilimumab therapy in patients with melanoma. , 2020, 8, e000209.		12
39	Induction of immunogenic cell death in radiation-resistant breast cancer stem cells by repurposing anti-alcoholism drug disulfiram. Cell Communication and Signaling, 2020, 18, 36.	2.7	47
40	A fast, simple, and cost-effective method of expanding patient-derived xenograft mouse models of pancreatic ductal adenocarcinoma. Journal of Translational Medicine, 2020, 18, 255.	1.8	8
41	IL15 Stimulation with TIGIT Blockade Reverses CD155-mediated NK-Cell Dysfunction in Melanoma. Clinical Cancer Research, 2020, 26, 5520-5533.	3.2	88
42	IncRNA CISAL Inhibits BRCA1 Transcription by Forming a Tertiary Structure at Its Promoter. IScience, 2020, 23, 100835.	1.9	21
43	HLA Class I Antigen Processing Machinery Defects in Cancer Cells—Frequency, Functional Significance, and Clinical Relevance with Special Emphasis on Their Role in T Cell-Based Immunotherapy of Malignant Disease. Methods in Molecular Biology, 2020, 2055, 325-350.	0.4	26
44	Targeting the innate immunoreceptor RIG-I overcomes melanoma-intrinsic resistance to T cell immunotherapy. Journal of Clinical Investigation, 2020, 130, 4266-4281.	3.9	27
45	B7-H3-targeted Radioimmunotherapy of Human Cancer. Current Medicinal Chemistry, 2020, 27, 4016-4038.	1.2	5
46	Novel <i>ANO5</i> mutation c.1067G>T (p.C356F) identified by whole genome sequencing in a big family with atypical gnathodiaphyseal dysplasia. Head and Neck, 2019, 41, 230-238.	0.9	7
47	Computationally Guided Design of Single-Chain Variable Fragment Improves Specificity of Chimeric Antigen Receptors. Molecular Therapy - Oncolytics, 2019, 15, 30-37.	2.0	20
48	Potential Role of HLA Class I Antigens in the Glycolytic Metabolism and Motility of Melanoma Cells. Cancers, 2019, 11, 1249.	1.7	5
49	B7-H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres. EBioMedicine, 2019, 47, 33-43.	2.7	101
50	Role of Tumor-Associated Macrophages in the Clinical Course of Pancreatic Neuroendocrine Tumors (PanNETs). Clinical Cancer Research, 2019, 25, 2644-2655.	3.2	56
51	Identification of CSPG4 as a promising target for translational combinatorial approaches in osteosarcoma. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591985549.	1.4	20
52	Cancer Stem Cells: The Players of Immune Evasion from Immunotherapy. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 223-249.	0.1	6
53	Iron and Ferritin Modulate MHC Class I Expression and NK Cell Recognition. Frontiers in Immunology, 2019, 10, 224.	2.2	41
54	Long Noncoding RNA MPRL Promotes Mitochondrial Fission and Cisplatin Chemosensitivity via Disruption of Pre-miRNA Processing. Clinical Cancer Research, 2019, 25, 3673-3688.	3.2	54

#	Article	IF	Citations
55	High IDO1 Expression Is Associated with Poor Outcome in Patients with Anal Cancer Treated with Definitive Chemoradiotherapy. Oncologist, 2019, 24, e275-e283.	1.9	18
56	Antitumor Responses in the Absence of Toxicity in Solid Tumors by Targeting B7-H3 via Chimeric Antigen Receptor T Cells. Cancer Cell, 2019, 35, 221-237.e8.	7.7	286
57	Decreased expression of mitochondrial miR-5787 contributes to chemoresistance by reprogramming glucose metabolism and inhibiting MT-CO3 translation. Theranostics, 2019, 9, 5739-5754.	4.6	36
58	IL-15/B7-H3 TriKEs-Based Immunotherapy for Pancreatic Ductal Adenocarcinoma. Journal of the American College of Surgeons, 2019, 229, S176.	0.2	5
59	Mitochondrial miRNA Determines Chemoresistance by Reprogramming Metabolism and Regulating Mitochondrial Transcription. Cancer Research, 2019, 79, 1069-1084.	0.4	94
60	Constitutive and TNF $\hat{l}\pm$ -inducible expression of chondroitin sulfate proteoglycan 4 in glioblastoma and neurospheres: Implications for CAR-T cell therapy. Science Translational Medicine, 2018, 10, .	5.8	96
61	Defective HLA class I antigen processing machinery in cancer. Cancer Immunology, Immunotherapy, 2018, 67, 999-1009.	2.0	68
62	Immunoaffinityâ€based isolation of melanoma cellâ€derived exosomes from plasma of patients with melanoma. Journal of Extracellular Vesicles, 2018, 7, 1435138.	5.5	210
63	212Pb-labeled B7-H3-targeting antibody for pancreatic cancer therapy in mouse models. Nuclear Medicine and Biology, 2018, 58, 67-73.	0.3	40
64	HLA class I antigen processing machinery (APM) component expression and PD-1:PD-L1 pathway activation in HIV-infected head and neck cancers. Oral Oncology, 2018, 77, 92-97.	0.8	7
65	Risk Prediction Model for Cisplatin-Associated Acute Kidney Injury. Journal of Clinical Oncology, 2018, 36, 2453-2454.	0.8	2
66	Resistance to anti-PD-1-based immunotherapy in basal cell carcinoma: a case report and review of the literature., 2018, 6, 126.		40
67	Human preprocalcitonin self-antigen generates TAP-dependent and -independent epitopes triggering optimised T-cell responses toward immune-escaped tumours. Nature Communications, 2018, 9, 5097.	5.8	21
68	The role of cancer stem cells in the modulation of anti-tumor immune responses. Seminars in Cancer Biology, 2018, 53, 189-200.	4.3	80
69	Significance of the intraindividual variability of HLA IgG antibodies in renal disease patients observed with different beadsets monitored with two different secondary antibodies on a Luminex platform. Immunologic Research, 2018, 66, 584-604.	1.3	13
70	Molecular and Functional Profiles of Exosomes From HPV(+) and HPV(â^') Head and Neck Cancer Cell Lines. Frontiers in Oncology, 2018, 8, 445.	1.3	50
71	212Pb-Labeled Antibody 225.28 Targeted to Chondroitin Sulfate Proteoglycan 4 for Triple-Negative Breast Cancer Therapy in Mouse Models. International Journal of Molecular Sciences, 2018, 19, 925.	1.8	31
72	Translational Research in Cutaneous Melanoma: New Therapeutic Perspectives. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 166-181.	0.9	10

#	Article	IF	Citations
73	Methods for improving the immunogenicity and efficacy of cancer vaccines. Expert Opinion on Biological Therapy, $2018,18,765-784.$	1.4	13
74	Pre-Clinical Evaluation of B7-H3-Specific Chimeric Antigen Receptor T-Cells for the Treatment of Acute Myeloid Leukemia. Blood, 2018, 132, 701-701.	0.6	6
75	Expression and clinical significance of antigen presentation components beta-2 microglobulin, HLA class I heavy chains, and HLA class II in non-small cell lung cancer (NSCLC) Journal of Clinical Oncology, 2018, 36, 12015-12015.	0.8	1
76	B7-H3-targeted 212Pb radioimmunotherapy of ovarian cancer in preclinical models. Nuclear Medicine and Biology, 2017, 47, 23-30.	0.3	52
77	HLA class II antigen-processing pathway in tumors: Molecular defects and clinical relevance. Oncolmmunology, 2017, 6, e1171447.	2.1	64
78	Epigenetic priming restores the HLA class-I antigen processing machinery expression in Merkel cell carcinoma. Scientific Reports, 2017, 7, 2290.	1.6	99
79	Multiparametric plasma EV profiling facilitates diagnosis of pancreatic malignancy. Science Translational Medicine, 2017, 9, .	5.8	211
80	Immunomodulating and Immunoresistance Properties of Cancer-Initiating Cells: Implications for the Clinical Success of Immunotherapy. Immunological Investigations, 2017, 46, 221-238.	1.0	77
81	Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer. Cancer Discovery, 2017, 7, 1420-1435.	7.7	507
82	High Antigen Processing Machinery component expression in Langerhans cells from melanoma patients' sentinel lymph nodes. Cellular Immunology, 2017, 320, 29-37.	1.4	5
83	ADAM12-L confers acquired 5-fluorouracil resistance in breast cancer cells. Scientific Reports, 2017, 7, 9687.	1.6	17
84	A novel chemoradiation targeting stem and nonstem pancreatic cancer cells by repurposing disulfiram. Cancer Letters, 2017, 409, 9-19.	3.2	48
85	Monitoring native HLA-I trimer specific antibodies in Luminex multiplex single antigen bead assay: Evaluation of beadsets from different manufacturers. Journal of Immunological Methods, 2017, 450, 73-80.	0.6	33
86	CD137 Stimulation Enhances Cetuximab-Induced Natural Killer: Dendritic Cell Priming of Antitumor T-Cell Immunity in Patients with Head and Neck Cancer. Clinical Cancer Research, 2017, 23, 707-716.	3.2	104
87	FCÎ ³ Chimeric Receptor-Engineered T Cells: Methodology, Advantages, Limitations, and Clinical Relevance. Frontiers in Immunology, 2017, 8, 457.	2.2	41
88	The Humoral Theory of Transplantation. Journal of Immunology Research, 2017, 2017, 1-3.	0.9	3
89	Expression status of folate receptor alpha is a predictor of survival in pancreatic ductal adenocarcinoma. Oncotarget, 2017, 8, 37646-37656.	0.8	23
90	Overexpression of miR-489 enhances efficacy of 5-fluorouracil-based treatment in breast cancer stem cells by targeting XIAP. Oncotarget, 2017, 8, 113837-113846.	0.8	15

#	Article	IF	CITATIONS
91	Intact APM and PD-1:PD-L1 pathway upregulation in HIV-infected head and neck cancer patients Journal of Clinical Oncology, 2017, 35, 6058-6058.	0.8	O
92	AIRE polymorphism, melanoma antigen-specific T cell immunity, and susceptibility to melanoma. Oncotarget, 2016, 7, 60872-60884.	0.8	8
93	Phosphorylated Histone H3 (PHH3) Is a Superior Proliferation Marker for Prognosis of Pancreatic Neuroendocrine Tumors. Annals of Surgical Oncology, 2016, 23, 609-617.	0.7	24
94	Anti-EGFR Targeted Monoclonal Antibody Isotype Influences Antitumor Cellular Immunity in Head and Neck Cancer Patients. Clinical Cancer Research, 2016, 22, 5229-5237.	3.2	107
95	CSPG4 as a prognostic biomarker in chordoma. Spine Journal, 2016, 16, 722-727.	0.6	28
96	HLA class I downregulation is associated with enhanced NKâ€cell killing of melanoma cells with acquired drug resistance to BRAF inhibitors. European Journal of Immunology, 2016, 46, 409-419.	1.6	31
97	Immunological and clinical significance of HLA class I antigen processing machinery component defects in malignant cells. Oral Oncology, 2016, 58, 52-58.	0.8	58
98	Antitumor Activity of BRAF Inhibitor and IFNÎ \pm Combination in BRAF-Mutant Melanoma. Journal of the National Cancer Institute, 2016, 108, djv435.	3.0	35
99	PD-L1 and HLA Class I Antigen Expression and Clinical Course of the Disease in Intrahepatic Cholangiocarcinoma. Clinical Cancer Research, 2016, 22, 470-478.	3.2	168
100	Enhancement of anti-leukemia activity of NK cells <i>in vitro</i> and <i>in vivo</i> by inhibition of leukemia cell-induced NK cell damage. Oncotarget, 2016, 7, 2070-2079.	0.8	15
101	Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget, 2016, 7, 7390-7402.	0.8	89
102	Chondroitin Sulfate Proteoglycan-4 (CSPG4)-Specific Monoclonal Antibody 225.28 in Detection of Acute Myeloid Leukemia Blasts. Oncology Research, 2015, 22, 117-121.	0.6	7
103	Melanoma initiating cells: where do we stand?. Melanoma Management, 2015, 2, 109-114.	0.1	5
104	STAT1-Induced HLA Class I Upregulation Enhances Immunogenicity and Clinical Response to Anti-EGFR mAb Cetuximab Therapy in HNC Patients. Cancer Immunology Research, 2015, 3, 936-945.	1.6	65
105	Intracellular antigens as targets for antibody based immunotherapy of malignant diseases. Molecular Oncology, 2015, 9, 1982-1993.	2.1	22
106	Chondroitin sulfate proteoglycan 4 as a target for chimeric antigen receptor-based T-cell immunotherapy of solid tumors. Expert Opinion on Therapeutic Targets, 2015, 19, 1339-1350.	1.5	22
107	CTLA-4+ Regulatory T Cells Increased in Cetuximab-Treated Head and Neck Cancer Patients Suppress NK Cell Cytotoxicity and Correlate with Poor Prognosis. Cancer Research, 2015, 75, 2200-2210.	0.4	217
108	Multiple Structural and Epigenetic Defects in the Human Leukocyte Antigen Class I Antigen Presentation Pathway in a Recurrent Metastatic Melanoma Following Immunotherapy. Journal of Biological Chemistry, 2015, 290, 26562-26575.	1.6	59

#	Article	IF	CITATIONS
109	Anti-proliferative and pro-apoptotic activity of GD2 ganglioside-specific monoclonal antibody 3F8 in human melanoma cells. Oncolmmunology, 2015, 4, e1023975.	2.1	33
110	Ipilimumab in the treatment of metastatic melanoma: management of adverse events. OncoTargets and Therapy, 2014, 7, 203.	1.0	87
111	NK cells and T cells cooperate during the clinical course of colorectal cancer. Oncolmmunology, 2014, 3, e952197.	2.1	110
112	Enrichment of CD56dimKIR+CD57+ highly cytotoxic NK cells in tumour-infiltrated lymph nodes of melanoma patients. Nature Communications, 2014, 5, 5639.	5.8	109
113	Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells., 2014, 2, 25.		112
114	Genetic Evolution of T-cell Resistance in the Course of Melanoma Progression. Clinical Cancer Research, 2014, 20, 6593-6604.	3.2	145
115	CSPG4-Specific Immunity and Survival Prolongation in Dogs with Oral Malignant Melanoma Immunized with Human CSPG4 DNA. Clinical Cancer Research, 2014, 20, 3753-3762.	3.2	64
116	Dendritic cell maturation in HCV infection: Altered regulation of MHC class I antigen processing-presenting machinery. Journal of Hepatology, 2014, 61, 242-251.	1.8	14
117	HLA Class II Antigen Expression in Colorectal Carcinoma Tumors as a Favorable Prognostic Marker. Neoplasia, 2014, 16, 31-W15.	2.3	99
118	Monoclonal antibody-based immunotherapy of ovarian cancer: Targeting ovarian cancer cells with the B7-H3-specific mAb 376.96. Gynecologic Oncology, 2014, 132, 203-210.	0.6	40
119	T Lymphocytes Redirected against the Chondroitin Sulfate Proteoglycan-4 Control the Growth of Multiple Solid Tumors both <i>In Vitro</i> and <i>In Vivo</i> Clinical Cancer Research, 2014, 20, 962-971.	3.2	95
120	Novel Tumor Antigen-Specific Monoclonal Antibody-Based Immunotherapy to Eradicate Both Differentiated Cancer Cells and Cancer-Initiating Cells in Solid Tumors. Seminars in Oncology, 2014, 41, 685-699.	0.8	10
121	Therapeutic Monoclonal Antibodies: Introduction. Seminars in Oncology, 2014, 41, 556-558.	0.8	3
122	Programmed Cell Death Ligand 1 Expression in Osteosarcoma. Cancer Immunology Research, 2014, 2, 690-698.	1.6	182
123	Cancer-Initiating Cells from Colorectal Cancer Patients Escape from T Cell–Mediated Immunosurveillance In Vitro through Membrane-Bound IL-4. Journal of Immunology, 2014, 192, 523-532.	0.4	97
124	Effect of p53 activity on the sensitivity of human glioblastoma cells to PARPâ€1 inhibitor in combination with topoisomerase i inhibitor or radiation. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 953-961.	1.1	12
125	Detection of Chondroitin Sulfate Proteoglycan 4 (CSPG4) in Melanoma. Methods in Molecular Biology, 2014, 1102, 523-535.	0.4	16
126	Variability in immune infiltrates and HLA expression in cholangiocarcinoma Journal of Clinical Oncology, 2014, 32, 230-230.	0.8	2

#	Article	IF	CITATIONS
127	Blocking the formation of radiation-induced breast cancer stem cells. Oncotarget, 2014, 5, 3743-3755.	0.8	92
128	Dose-seeking and efficacy study of combination BRAFi and high-dose IFN (HDI) for therapy of advanced melanoma Journal of Clinical Oncology, 2014, 32, TPS9110-TPS9110.	0.8	0
129	Phase I-II study of the combination vemurafenib plus peg-interferon in advanced melanoma patients harboring the V600BRAF mutation Journal of Clinical Oncology, 2014, 32, TPS9105-TPS9105.	0.8	0
130	Emerging BRAF inhibitors for melanoma. Expert Opinion on Emerging Drugs, 2013, 18, 431-443.	1.0	5
131	EGFR-mediated tumor immunoescape. Oncolmmunology, 2013, 2, e27215.	2.1	35
132	SHP2 Is Overexpressed and Inhibits pSTAT1-Mediated APM Component Expression, T-cell Attracting Chemokine Secretion, and CTL Recognition in Head and Neck Cancer Cells. Clinical Cancer Research, 2013, 19, 798-808.	3.2	70
133	LOH in the HLA Class I Region at 6p21 Is Associated with Shorter Survival in Newly Diagnosed Adult Glioblastoma. Clinical Cancer Research, 2013, 19, 1816-1826.	3.2	70
134	Tumor Antigen-Specific Monoclonal Antibody-Based Immunotherapy, Cancer Initiating Cells and Disease Recurrence. Resistance To Targeted Anti-cancer Therapeutics, 2013, , 25-47.	0.1	4
135	Multidisciplinary Approach to Patient with Malignant Melanoma. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 887-900.	0.9	3
136	CSPG4 as a Target of Antibody-Based Immunotherapy for Malignant Mesothelioma. Clinical Cancer Research, 2012, 18, 5352-5363.	3.2	78
137	Melanoma Cells Inhibit NK Cell Functions—Letter. Cancer Research, 2012, 72, 5428-5429.	0.4	61
138	A review of B7-H3 and B7-H4 immune molecules and their role in ovarian cancer. Gynecologic Oncology, 2012, 127, 420-425.	0.6	64
139	Down-regulation of Human Leukocyte Antigen class I heavy chain in tumors is associated with a poor prognosis in advanced esophageal cancer patients. International Journal of Oncology, 2012, 40, 965-974.	1.4	39
140	Targeting ALDHbright Human Carcinoma–Initiating Cells with ALDH1A1-Specific CD8+ T Cells. Clinical Cancer Research, 2011, 17, 6174-6184.	3.2	148
141	CSPG4, a potential therapeutic target, facilitates malignant progression of melanoma. Pigment Cell and Melanoma Research, 2011, 24, 1148-1157.	1.5	145
142	Chondroitin sulfate proteoglycan-4: A biomarker and a potential immunotherapeutic target for canine malignant melanoma. Veterinary Journal, 2011, 190, e26-e30.	0.6	37
143	Association of IFN- \hat{I}^3 Signal Transduction Defects with Impaired HLA Class I Antigen Processing in Melanoma Cell Lines. Clinical Cancer Research, 2011, 17, 2668-2678.	3.2	67
144	Functional Characterization of an scFv-Fc Antibody that Immunotherapeutically Targets the Common Cancer Cell Surface Proteoglycan CSPG4. Cancer Research, 2011, 71, 7410-7422.	0.4	54

#	Article	IF	CITATIONS
145	Hidden Immunotherapy Targets Challenge Dogma. Science Translational Medicine, 2011, 3, 99ps38.	5.8	12
146	Association of HLA class I antigen abnormalities with disease progression and early recurrence in prostate cancer. Cancer Immunology, Immunotherapy, 2010, 59, 529-540.	2.0	77
147	Response to the letter to the editors by Ottaiano et al.: "Cetuximab-dependent ADCC in cancer: dream or reality?― Cancer Immunology, Immunotherapy, 2010, 59, 1609-1610.	2.0	0
148	A High Molecular Weight Melanoma-Associated Antigen–Specific Chimeric Antigen Receptor Redirects Lymphocytes to Target Human Melanomas. Cancer Research, 2010, 70, 3027-3033.	0.4	70
149	Immunotherapy of Malignant Disease with Tumor Antigen–Specific Monoclonal Antibodies. Clinical Cancer Research, 2010, 16, 11-20.	3.2	65
150	CSPG4 Protein as a New Target for the Antibody-Based Immunotherapy of Triple-Negative Breast Cancer. Journal of the National Cancer Institute, 2010, 102, 1496-1512.	3.0	148
151	Immunobiological Characterization of Cancer Stem Cells Isolated from Glioblastoma Patients. Clinical Cancer Research, 2010, 16, 800-813.	3.2	295
152	Tumor Antigen–Targeted, Monoclonal Antibody–Based Immunotherapy: Clinical Response, Cellular Immunity, and Immunoescape. Journal of Clinical Oncology, 2010, 28, 4390-4399.	0.8	285
153	Functional and Clinical Relevance of Chondroitin Sulfate Proteoglycan 4. Advances in Cancer Research, 2010, 109, 73-121.	1.9	93
154	Role of polymorphic Fc gamma receptor IIIa and EGFR expression level in cetuximab mediated, NK cell dependent in vitro cytotoxicity of head and neck squamous cell carcinoma cells. Cancer Immunology, Immunotherapy, 2009, 58, 1853-1862.	2.0	148
155	NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. Journal of Clinical Investigation, 2009, 119, 1251-1263.	3.9	313
156	Association of antigen processing machinery and HLA class I defects with clinicopathological outcome in cervical carcinoma. Cancer Immunology, Immunotherapy, 2008, 57, 197-206.	2.0	160
157	Anti-inflammatory biologic therapies and immune surveillance of melanoma. Expert Review of Dermatology, 2008, 3, 129-131.	0.3	0
158	Cancer Immunotherapy Targeting the High Molecular Weight Melanoma-Associated Antigen Protein Results in a Broad Antitumor Response and Reduction of Pericytes in the Tumor Vasculature. Cancer Research, 2008, 68, 8066-8075.	0.4	91
159	Expression and prognostic significance of prothymosin-l± and ERp57 in human gastric cancer. Surgery, 2007, 141, 41-50.	1.0	93
160	Immune selective pressure and HLA class I antigen defects in malignant lesions. Cancer Immunology, Immunotherapy, 2006, 56, 227-236.	2.0	102
161	Immune Escape Associated with Functional Defects in Antigen-Processing Machinery in Head and Neck Cancer. Clinical Cancer Research, 2006, 12, 3890-3895.	3.2	200
162	A fresh look at an old story: revisiting HLA class II antigen expression by melanoma cells. Expert Review of Dermatology, 2006, $1,805-823$.	0.3	5

#	Article	IF	CITATIONS
163	HLA Class I Antigen Down-regulation in Primary Laryngeal Squamous Cell Carcinoma Lesions as a Poor Prognostic Marker. Cancer Research, 2006, 66, 9281-9289.	0.4	165
164	The Effects of Anti-High Molecular Weight-Melanoma Associated Antigen (HMW-MAA) Monoclonal Antibodies (mAb) Against 11q23 Positive Acute Leukemia Cells Blood, 2006, 108, 4550-4550.	0.6	1
165	Multiple defects of the antigen-processing machinery components in human neuroblastoma: immunotherapeutic implications. Oncogene, 2005, 24, 4634-4644.	2.6	92
166	A method to generate antigen-specific mAb capable of staining formalin-fixed, paraffin-embedded tissue sections. Journal of Immunological Methods, 2005, 299, 139-151.	0.6	56
167	Human High Molecular Weight Melanoma-Associated Antigen Mimicry by Mouse Anti-Idiotypic Monoclonal Antibody MK2-23: Enhancement of Immunogenicity of Anti-Idiotypic Monoclonal Antibody MK2-23 by Fusion with Interleukin 2. Cancer Research, 2005, 65, 6976-6983.	0.4	21
168	Defects in the Human Leukocyte Antigen Class I Antigen Processing Machinery in Head and Neck Squamous Cell Carcinoma: Association with Clinical Outcome. Clinical Cancer Research, 2005, 11, 2552-2560.	3.2	222
169	Classical and Nonclassical HLA Class I Antigen and NK Cell–Activating Ligand Changes in Malignant Cells: Current Challenges and Future Directions. Advances in Cancer Research, 2005, 93, 189-234.	1.9	102
170	Immune Selection of Hot-Spot $\hat{I}^22 < i >$ -Microglobulin $< i >$ Gene Mutations, HLA-A2 Allospecificity Loss, and Antigen-Processing Machinery Component Down-Regulation in Melanoma Cells Derived from Recurrent Metastases following Immunotherapy. Journal of Immunology, 2005, 174, 1462-1471.	0.4	96
171	Differential Immunogenicity of Two Peptides Isolated by High Molecular Weight-Melanoma-Associated Antigen-Specific Monoclonal Antibodies with Different Affinities. Journal of Immunology, 2005, 174, 7104-7110.	0.4	22
172	Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms. Journal of Cell Biology, 2004, 165, 881-891.	2.3	133
173	Down-regulation of HLA-A and HLA-Bw6, but not HLA-Bw4, allospecificities in leukemic cells: an escape mechanism from CTL and NK attack?. Blood, 2004, 103, 3122-3130.	0.6	102
174	Human High Molecular Weight-Melanoma-Associated Antigen (HMW-MAA): A Melanoma Cell Surface Chondroitin Sulfate Proteoglycan (MSCP) with Biological and Clinical Significance. Critical Reviews in Immunology, 2004, 24, 267-296.	1.0	167
175	The Antileukemic Effect of NK and NK-T Cells Against Chronic Myelogenous Leukemia Is Dominated by Interactions between Activating Molecules and Their Ligands Which Overcome Inhibitory KIR-MHC Class I Interaction Blood, 2004, 104, 2948-2948.	0.6	0
176	Characterization of antigen processing machinery and Survivin expression in tonsillar squamous cell carcinoma. Cancer, 2003, 97, 2203-2211.	2.0	35
177	Î ² 2-Microglobulin-Free HLA Class I Heavy Chain Epitope Mimicry by Monoclonal Antibody HC-10-Specific Peptide. Journal of Immunology, 2003, 171, 1918-1926.	0.4	150
178	Characterization of human lymphocyte antigen class I antigen-processing machinery defects in renal cell carcinoma lesions with special emphasis on transporter-associated with antigen-processing down-regulation. Clinical Cancer Research, 2003, 9, 1721-7.	3.2	87
179	Association of tapasin and HLA class I antigen down-regulation in primary maxillary sinus squamous cell carcinoma lesions with reduced survival of patients. Clinical Cancer Research, 2003, 9, 4043-51.	3.2	63

Changes in Serum Ganglioside and Antibody Levels in Soft Tissue Sarcoma. Cancer Journal (Sudbury,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	lF	Citations
181	Soluble human leukocyte antigen-G serum level is elevated in melanoma patients and is further increased by interferon-? immunotherapy. Cancer, 2001, 92, 369-376.	2.0	155
182	TAP1 down-regulation in primary melanoma lesions: An independent marker of poor prognosis. International Journal of Cancer, 2001, 95, 23-28.	2.3	70
183	Differential clinical significance of $\hat{l}\pm\nu\hat{l}'3$ expression in primary lesions of acral lentiginous melanoma and of other melanoma histotypes. , 2000, 89, 153-159.		28
184	\hat{l}_{\pm} v \hat{l}^2 3 expression on blood vessels and melanoma cells in primary lesions; differential association with tumor progression and clinical prognosis. Cancer Immunology, Immunotherapy, 2000, 49, 314-318.	2.0	28
185	Structural Relatedness of Distinct Determinants Recognized by Monoclonal Antibody TP25.99 on \hat{l}^2 2-Microglobulin-Associated and \hat{l}^2 2-Microglobulin-Free HLA Class I Heavy Chains. Journal of Immunology, 2000, 165, 3275-3283.	0.4	49
186	Selective Histocompatibility Leukocyte Antigen (Hla)-A2 Loss Caused by Aberrant Pre-mRNA Splicing in 624mel28 Melanoma Cells. Journal of Experimental Medicine, 1999, 190, 205-216.	4.2	98
187	Escape of Human Solid Tumors from T–Cell Recognition: Molecular Mechanisms and Functional Significance. Advances in Immunology, 1999, 74, 181-273.	1.1	998
188	Specific Lysis of Melanoma Cells by Receptor Grafted T Cells is Enhanced by Anti-Idiotypic Monoclonal Antibodies Directed to the scFv Domain of the Receptor. Journal of Investigative Dermatology, 1999, 112, 744-750.	0.3	23
189	HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Trends in Molecular Medicine, 1999, 5, 178-186.	2.6	321
190	Down-Regulation of HLA Class I Antigen-Processing Molecules in Malignant Melanoma. American Journal of Pathology, 1999, 154, 745-754.	1.9	239
191	Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinial relevance. Trends in Immunology, 1995, 16, 487-494.	7.5	447
192	Radioimmunodetection of Melanoma: Preliminary Results of a Prospective Study. International Journal of Biological Markers, 1986, 1, 47-54.	0.7	20
193	Distribution of a Cross-Species Melanoma-Associated Antigen in Normal and Neoplastic Human Tissues. Journal of Investigative Dermatology, 1985, 85, 340-346.	0.3	14
194	Analysis of the NIH Workshop Monoclonal Antibodies to Human Melanoma Antigens. Hybridoma, 1982, 1, 473-482.	0.9	16
195	HETEROGENEOUS DISTRIBUTION OF THE DETERMINANTS DEFINED BY MONOCLONAL ANTIBODIES ON HLA-A AND B ANTIGENS BEARING MOLECULES. Transplantation, 1982, 34, 18-23.	0.5	95
196	Distribution and molecular characterization of a cell-surface and a cytoplasmic antigen detectable in human melanoma cells with monoclonal antibodies. International Journal of Cancer, 1981, 28, 293-300.	2.3	240
197	Distribution of antigenic determinants recognized by three monoclonal antibodies (Q2/70, Q5/6 and) Tj ETQq $1\ 1$	0.784314 1.2	1 rgBT /Overl
198	Stimulation of human T lymphocytes by PHA-activated autologous T lymphocytes: Analysis of the role of la-like antigens with monoclonal antibodies. Immunogenetics, 1981, 12, 267-274.	1.2	57

#	Article	IF	CITATIONS
199	Lymphocytotoxic antibodies in systemic lupus erythematosus patients and their relatives. Arthritis and Rheumatism, 1980, 23, 265-272.	6.7	41
200	Sera from Volunteers Immunized by Planned Blood Transfusions as a Source of Dr Cytotoxic Typing Reagents. Immunological Investigations, 1979, 8, 93-106.	0.9	3
201	Structural polymorphism of human DR antigens. Nature, 1979, 279, 436-437.	13.7	66
202	The Major Portion of Rabbit Antibody to Serum HLAâ€A9 Antigens is Directed to Allospecificity. Tissue Antigens, 1978, 12, 153-155.	1.0	1
203	Rabbit Complement in the Lymphocytotoxicity Test. Tissue Antigens, 1977, 9, 223-226.	1.0	14
204	Association of HL-A antigens and \hat{l}^2 2-microglobulin at the cellular and molecular level. Immunogenetics, 1975, 2, 183-197.	1.2	55
205	Activation of the complement system by H-2 alloantisera: Differential susceptibility to lysis of thymocytes and lymphocytes. Immunogenetics, 1975, 2, 199-203.	1.2	1
206	Diversity of Extracellular Vesicles (EV) in Plasma of Cancer Patients. Physiology, 0, , .	4.0	0