Douglas R Call

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/856932/publications.pdf

Version: 2024-02-01

143 papers

6,722 citations

46984 47 h-index 71651 76 g-index

144 all docs

144 docs citations

144 times ranked 6914 citing authors

#	Article	IF	Citations
1	Genome Sequence of Escherichia coli Isolated from an Adult in Kibera, an Urban Informal Settlement in Nairobi, Kenya. Microbiology Resource Announcements, 2022, , e0124121.	0.3	O
2	Temporal Transcriptional Responses of a Vibrio alginolyticus Strain to <i>Podoviridae</i> Phage HH109 Revealed by RNA-Seq. MSystems, 2022, 7, e0010622.	1.7	4
3	Point-prevalence survey of antibiotic use at three public referral hospitals in Kenya. PLoS ONE, 2022, 17, e0270048.	1.1	10
4	Excreted Antibiotics May Be Key to Emergence of Increasingly Efficient Antibiotic Resistance in Food Animal Production. Applied and Environmental Microbiology, 2022, 88, .	1.4	1
5	On-farm soil resistome is modified after treating dairy calves with the antibiotic florfenicol. Science of the Total Environment, 2021, 750, 141694.	3.9	11
6	In vitro activity of antimicrobial peptide CDP-B11 alone and in combination with colistin against colistin-resistant and multidrug-resistant Escherichia coli. Scientific Reports, 2021, 11, 2151.	1.6	15
7	Carriage of antimicrobial-resistant bacteria in a high-density informal settlement in Kenya is associated with environmental risk-factors. Antimicrobial Resistance and Infection Control, 2021, 10, 18.	1.5	16
8	Sequential Hypertonic-Hypotonic Treatment Enhances Efficacy of Antibiotic against Acinetobacter baumannii Biofilm Communities. Antibiotics, 2020, 9, 832.	1.5	4
9	Molecular analysis of florfenicol-resistant bacteria isolated from drinking water distribution systems in Southwestern Nigeria. Journal of Global Antimicrobial Resistance, 2020, 23, 340-344.	0.9	12
10	Antibiotic use and hygiene interact to influence the distribution of antimicrobial-resistant bacteria in low-income communities in Guatemala. Scientific Reports, 2020, 10, 13767.	1.6	32
11	Antibiotic residues and antibiotic-resistant bacteria detected in milk marketed for human consumption in Kibera, Nairobi. PLoS ONE, 2020, 15, e0233413.	1.1	25
12	Circumventing colistin resistance by combining colistin and antimicrobial peptides to kill colistin-resistant and multidrug-resistant Gram-negative bacteria. Journal of Global Antimicrobial Resistance, 2020, 22, 706-712.	0.9	9
13	Antimicrobial resistant enteric bacteria are widely distributed amongst people, animals and the environment in Tanzania. Nature Communications, 2020, 11, 228.	5.8	69
14	Wholeâ€genome sequencing reveals <i>Listeria monocytogenes</i> diversity and allows identification of longâ€term persistent strains in Brazil. Environmental Microbiology, 2019, 21, 4478-4487.	1.8	30
15	Narrative risk messages increase uptake and sharing of health interventions in a hard-to-reach population: A pilot study to promote milk safety among Maasai pastoralists in Tanzania. Pastoralism, 2019, 9, .	0.3	12
16	Dairy farm soil presents distinct microbiota and varied prevalence of antibiotic resistance across housing areas. Environmental Pollution, 2019, 254, 113058.	3.7	25
17	Large-Scale Analysis of Flavobacterium psychrophilum Multilocus Sequence Typing Genotypes Recovered from North American Salmonids Indicates that both Newly Identified and Recurrent Clonal Complexes Are Associated with Disease. Applied and Environmental Microbiology, 2019, 85, .	1.4	20
18	Spatial relationships between small-holder farms coupled with livestock management practices are correlated with the distribution of antibiotic resistant bacteria in northern Tanzania. One Health, 2019, 8, 100097.	1.5	6

#	Article	IF	CITATIONS
19	Responses of <i>Acinetobacter baumannii</i> Bound and Loose Extracellular Polymeric Substances to Hyperosmotic Agents Combined with or without Tobramycin: An Atomic Force Microscopy Study. Langmuir, 2019, 35, 9071-9083.	1.6	6
20	\hat{l}^2 -lactam resistance genes in bacteriophage and bacterial DNA from wastewater, river water, and irrigation water in Washington State. Water Research, 2019, 161, 335-340.	5 . 3	31
21	Microcin PDI Inhibits Antibiotic-Resistant Strains of Escherichia coli and <i>Shigella</i> through a Mechanism of Membrane Disruption and Protection by Homotrimer Self-Immunity. Applied and Environmental Microbiology, 2019, 85, .	1.4	14
22	Hypochlorous-Acid-Generating Electrochemical Scaffold for Treatment of Wound Biofilms. Scientific Reports, 2019, 9, 2683.	1.6	43
23	Structural and metabolic responses of Staphylococcus aureus biofilms to hyperosmotic and antibiotic stress. Biotechnology and Bioengineering, 2018, 115, 1594-1603.	1.7	11
24	Isolation of an IncP-1 plasmid harbouring mcr-1 from a chicken isolate of Citrobacter braakii in China. International Journal of Antimicrobial Agents, 2018, 51, 936-940.	1,1	8
25	Identification of risk factors associated with carriage of resistant Escherichia coli in three culturally diverse ethnic groups in Tanzania: a biological and socioeconomic analysis. Lancet Planetary Health, The, 2018, 2, e489-e497.	5.1	47
26	Children's Ethnobiological Notions of Contamination and Contagions among Maasai Agro-Pastoralists of Northern Tanzania. Journal of Ethnobiology, 2018, 38, 261-275.	0.8	3
27	Hyperosmotic Agents and Antibiotics Affect Dissolved Oxygen and pH Concentration Gradients in Staphylococcus aureus Biofilms. Applied and Environmental Microbiology, 2017, 83, .	1.4	15
28	Microcin PDI regulation and proteolytic cleavage are unique among known microcins. Scientific Reports, 2017, 7, 42529.	1.6	20
29	The impact of fecal sample processing on prevalence estimates for antibiotic-resistant Escherichia coli. Journal of Microbiological Methods, 2017, 136, 71-77.	0.7	6
30	Osmotic Compounds Enhance Antibiotic Efficacy against Acinetobacter baumannii Biofilm Communities. Applied and Environmental Microbiology, 2017, 83, .	1.4	14
31	Autoinducer-2 Quorum Sensing Contributes to Regulation of Microcin PDI in Escherichia coli. Frontiers in Microbiology, 2017, 8, 2570.	1.5	17
32	Antimicrobial Use and Veterinary Care among Agro-Pastoralists in Northern Tanzania. PLoS ONE, 2017, 12, e0170328.	1.1	80
33	Evidence of superficial knowledge regarding antibiotics and their use: Results of two cross-sectional surveys in an urban informal settlement in Kenya. PLoS ONE, 2017, 12, e0185827.	1.1	19
34	A two-month follow-up evaluation testing interventions to limit the emergence and spread of antimicrobial resistant bacteria among Maasai of northern Tanzania. BMC Infectious Diseases, 2017, 17, 770.	1.3	11
35	IncF Plasmids Are Commonly Carried by Antibiotic Resistant <i>Escherichia coli</i> Isolated from Drinking Water Sources in Northern Tanzania. International Journal of Microbiology, 2016, 2016, 1-7.	0.9	54
36	ExsE Is a Negative Regulator for T3SS Gene Expression in Vibrio alginolyticus. Frontiers in Cellular and Infection Microbiology, 2016, 6, 177.	1.8	27

#	Article	IF	Citations
37	Comparison of antibiotic resistant Escherichia coli obtained from drinking water sources in northern Tanzania: a cross-sectional study. BMC Microbiology, 2016, 16, 254.	1.3	48
38	Eradication of Pseudomonas aeruginosa biofilms and persister cells using an electrochemical scaffold and enhanced antibiotic susceptibility. Npj Biofilms and Microbiomes, 2016, 2, 2.	2.9	51
39	Maltodextrin enhances biofilm elimination by electrochemical scaffold. Scientific Reports, 2016, 6, 36003.	1.6	12
40	Prevalence of Antibiotic-Resistant Fecal Escherichia coli Isolates from Penned Broiler and Scavenging Local Chickens in Arusha, Tanzania. Journal of Food Protection, 2016, 79, 1424-1429.	0.8	20
41	Antimicrobial stewardship through a one health lens. International Journal of Health Governance, 2016, 21, 114-130.	0.6	7
42	Load and Prevalence of Antimicrobial-Resistant Escherichia coli from Fresh Goat Meat in Arusha, Tanzania. Journal of Food Protection, 2016, 79, 1635-1641.	0.8	7
43	Not All Antibiotic Use Practices in Food-Animal Agriculture Afford the Same Risk. Journal of Environmental Quality, 2016, 45, 618-629.	1.0	24
44	Soilâ€borne reservoirs of antibioticâ€resistant bacteria are established following therapeutic treatment of dairy calves. Environmental Microbiology, 2016, 18, 557-564.	1.8	65
45	Role of carriers in the transmission of pneumonia in bighorn sheep (<i>Ovis canadensis</i>). Biology Open, 2016, 5, 745-755.	0.6	4
46	Comparison of quantitative PCR and ELISA for detection and quantification of Flavobacterium psychrophilum in salmonid broodstock. Diseases of Aquatic Organisms, 2015, 115, 139-146.	0.5	1
47	Electrochemical scaffold generates localized, low concentration of hydrogen peroxide that inhibits bacterial pathogens and biofilms. Scientific Reports, 2015, 5, 14908.	1.6	68
48	Potential mechanisms of attenuation for rifampicin-passaged strains of Flavobacterium psychrophilum. BMC Microbiology, 2015, 15, 179.	1.3	9
49	Vancomycin and maltodextrin affect structure and activity of <i>Staphylococcus aureus</i> biofilms. Biotechnology and Bioengineering, 2015, 112, 2562-2570.	1.7	15
50	Regulation of electron transfer processes affects phototrophic mat structure and activity. Frontiers in Microbiology, 2015, 6, 909.	1.5	11
51	Colonization of Epidermal Tissue by Staphylococcus aureus Produces Localized Hypoxia and Stimulates Secretion of Antioxidant and Caspase-14 Proteins. Infection and Immunity, 2015, 83, 3026-3034.	1.0	14
52	Evaluation of 27 different biochars for potential sequestration of antibiotic residues in food animal production environments. Journal of Environmental Chemical Engineering, 2015, 3, 162-169.	3.3	47
53	Entericidin Is Required for a Probiotic Treatment (Enterobacter sp. Strain C6-6) To Protect Trout from Cold-Water Disease Challenge. Applied and Environmental Microbiology, 2015, 81, 658-665.	1.4	28
54	A review of 40Âyears of enteric antimicrobial resistance research in Eastern Africa: what can be done better?. Antimicrobial Resistance and Infection Control, 2015, 4, 1.	1.5	97

#	Article	IF	CITATIONS
55	The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction. Bioresource Technology, 2015, 192, 689-695.	4.8	69
56	Genome-Wide Screening Identifies Six Genes That Are Associated with Susceptibility to Escherichia coli Microcin PDI. Applied and Environmental Microbiology, 2015, 81, 6953-6963.	1.4	17
57	Staphylococcus aureus Induces Hypoxia and Cellular Damage in Porcine Dermal Explants. Infection and Immunity, 2015, 83, 2531-2541.	1.0	52
58	An Individual-Based Model of Transmission of Resistant Bacteria in a Veterinary Teaching Hospital. PLoS ONE, 2014, 9, e98589.	1.1	18
59	Transcriptome analysis of Vibrio parahaemolyticus in type III secretion system 1 inducing conditions. Frontiers in Cellular and Infection Microbiology, $2014,4,1.$	1.8	160
60	Complete Genome Sequence of Flavobacterium psychrophilum Strain CSF259-93, Used To Select Rainbow Trout for Increased Genetic Resistance against Bacterial Cold Water Disease. Genome Announcements, 2014, 2, .	0.8	34
61	Immunization of rainbow troutOncorhynchus mykiss(Walbaum) with a crude lipopolysaccharide extract fromFlavobacterium psychrophilum. Aquaculture Research, 2014, 45, 476-483.	0.9	1
62	Ciprofloxacin Residues in Municipal Biosolid Compost Do Not Selectively Enrich Populations of Resistant Bacteria. Applied and Environmental Microbiology, 2014, 80, 7521-7526.	1.4	20
63	Growth of Mannheimia haemolytica: Inhibitory agents and putative mechanism of inhibition. Veterinary Microbiology, 2014, 174, 155-162.	0.8	4
64	Microcin MccPDI reduces the prevalence of susceptible Escherichia coli in neonatal calves. Journal of Applied Microbiology, 2014, 117, 340-346.	1.4	6
65	Differential Protection from Tobramycin by Extracellular Polymeric Substances from Acinetobacter baumannii and Staphylococcus aureus Biofilms. Antimicrobial Agents and Chemotherapy, 2014, 58, 4755-4761.	1.4	60
66	Evidence for Recent Acquisition and Successful Transmission of bla CTX-M-15 in Salmonella enterica in South Korea. Antimicrobial Agents and Chemotherapy, 2013, 57, 2383-2387.	1.4	11
67	Do antibiotic residues in soils play a role in amplification and transmission of antibiotic resistant bacteria in cattle populations?. Frontiers in Microbiology, 2013, 4, 193.	1.5	37
68	Using Protein Clusters from Whole Proteomes to Construct and Augment a Dendrogram. Advances in Bioinformatics, 2013, 2013, 1-8.	5.7	9
69	Vibrio parahaemolyticus ExsE is requisite for initial adhesion and subsequent type III secretion system 1-dependent autophagy in HeLa cells. Microbiology (United Kingdom), 2012, 158, 2303-2314.	0.7	34
70	Characterization of Mono- and Mixed-Culture Campylobacter jejuni Biofilms. Applied and Environmental Microbiology, 2012, 78, 1033-1038.	1.4	81
71	Identification of Potential Type III Secretion Proteins via Heterologous Expression of Vibrio parahaemolyticus DNA. Applied and Environmental Microbiology, 2012, 78, 3492-3494.	1.4	11
72	Differential Virulence of Clinical and Bovine-Biased Enterohemorrhagic Escherichia coli O157:H7 Genotypes in Piglet and Dutch Belted Rabbit Models. Infection and Immunity, 2012, 80, 369-380.	1.0	33

#	Article	IF	CITATIONS
73	Characterization of a Novel Microcin That Kills Enterohemorrhagic Escherichia coli O157:H7 and O26. Applied and Environmental Microbiology, 2012, 78, 6592-6599.	1.4	35
74	<i>Salmonella</i> Enteritidis Strains from Poultry Exhibit Differential Responses to Acid Stress, Oxidative Stress, and Survival in the Egg Albumen. Foodborne Pathogens and Disease, 2012, 9, 258-264.	0.8	59
75	Genetic relationships among 527 Gram-negative bacterial plasmids. Plasmid, 2012, 68, 133-141.	0.4	7
76	Urine from Treated Cattle Drives Selection for Cephalosporin Resistant Escherichia coli in Soil. PLoS ONE, 2012, 7, e48919.	1.1	33
77	Validation of diagnostic assays to screen broodstock for <i>Flavobacterium psychrophilum</i> infections. Journal of Fish Diseases, 2012, 35, 407-419.	0.9	6
78	\hat{l}^2 -Lactams and Florfenicol Antibiotics Remain Bioactive in Soils while Ciprofloxacin, Neomycin, and Tetracycline Are Neutralized. Applied and Environmental Microbiology, 2011, 77, 7255-7260.	1.4	82
79	Proximity-Dependent Inhibition inEscherichia colilsolates from Cattle. Applied and Environmental Microbiology, 2011, 77, 2345-2351.	1.4	28
80	Comparison of Passively Transferred Antibodies in Bighorn and Domestic Lambs Reveals One Factor in Differential Susceptibility of These Species to Mannheimia haemolytica-Induced Pneumonia. Vaccine Journal, 2011, 18, 1133-1138.	3.2	13
81	Selection Pressure Required for Long-Term Persistence of <i>bla</i> _{CMY-2} -Positive IncA/C Plasmids. Applied and Environmental Microbiology, 2011, 77, 4486-4493.	1.4	91
82	Cell invasion of poultry-associated Salmonella enterica serovar Enteritidis isolates is associated with pathogenicity, motility and proteins secreted by the type III secretion system. Microbiology (United Kingdom), 2011, 157, 1428-1445.	0.7	77
83	Multilocus variable-number tandem-repeat analysis for subtypingSalmonella entericaserovar Gallinarum. Avian Pathology, 2011, 40, 559-564.	0.8	11
84	Development of a DNA microarray for detection of expressed equine classical MHC class I sequences in a defined population. Immunogenetics, 2010, 62, 633-639.	1.2	7
85	<i>bla</i> _{CMY-2} -Positive IncA/C Plasmids from <i>Escherichia coli</i> and <i>Salmonella enterica</i> Are a Distinct Component of a Larger Lineage of Plasmids. Antimicrobial Agents and Chemotherapy, 2010, 54, 590-596.	1.4	147
86	<i>Bibersteinia trehalosi</i> Inhibits the Growth of <i>Mannheimia haemolytica</i> by a Proximity-Dependent Mechanism. Applied and Environmental Microbiology, 2010, 76, 1008-1013.	1.4	42
87	Vp1659 Is a <i>Vibrio parahaemolyticus</i> Type III Secretion System 1 Protein That Contributes to Translocation of Effector Proteins Needed To Induce Cytolysis, Autophagy, and Disruption of Actin Structure in HeLa Cells. Journal of Bacteriology, 2010, 192, 3491-3502.	1.0	28
88	Development of Two Animal Models To Study the Function of <i>Vibrio parahaemolyticus</i> Type III Secretion Systems. Infection and Immunity, 2010, 78, 4551-4559.	1.0	57
89	Regulation of type III secretion system 1 gene expression in <i>Vibrio parahaemolyticus</i> is dependent on interactions between ExsA, ExsC, and ExsD. Virulence, 2010, 1, 260-272.	1.8	44
90	Development and validation of a resistance and virulence gene microarray targeting Escherichia coli and Salmonella enterica. Journal of Microbiological Methods, 2010, 82, 36-41.	0.7	14

#	Article	IF	Citations
91	Role of Ceftiofur in Selection and Dissemination of <i>bla</i> _{CMY-2} -Mediated Cephalosporin Resistance in <i>Salmonella enterica</i> and Commensal <i>Escherichia coli</i> Isolates from Cattle. Applied and Environmental Microbiology, 2009, 75, 3648-3655.	1.4	7 5
92	Type III secretion system 1 of Vibrio parahaemolyticus induces oncosis in both epithelial and monocytic cell lines. Microbiology (United Kingdom), 2009, 155, 837-851.	0.7	42
93	Multilocus Variable-Number Tandem-Repeat Method for Typing <i>Salmonella enterica</i> Serovar Newport. Journal of Clinical Microbiology, 2009, 47, 1934-1938.	1.8	32
94	Escherichia., 2009,,.		0
95	Type III secretion system 1 genes in <i>Vibrio parahaemolyticus</i> are positively regulated by ExsA and negatively regulated by ExsD. Molecular Microbiology, 2008, 69, 747-764.	1.2	81
96	A Java-based tool for the design of classification microarrays. BMC Bioinformatics, 2008, 9, 328.	1,2	3
97	Isolation of rifampicin resistant Flavobacterium psychrophilum strains and their potential as live attenuated vaccine candidates. Vaccine, 2008, 26, 5582-5589.	1.7	58
98	Identifying Sources of Fecal Pollution in the Colville River Using Library-independent Genetic Markers. Northwest Science, 2008, 82, 120-127.	0.1	0
99	A Discrete, Stochastic Model and Correction Method for Bacterial Source Tracking. Environmental Science & Environmental Scienc	4.6	14
100	Impact of Compounding Error on Strategies for Subtyping Pathogenic Bacteria. Foodborne Pathogens and Disease, 2008, 5, 505-516.	0.8	16
101	Campylobacter jejuni invade chicken LMH cells inefficiently and stimulate differential expression of the chicken CXCLi1 and CXCLi2 cytokines. Microbiology (United Kingdom), 2008, 154, 3835-3847.	0.7	54
102	Antimicrobial resistance in beef and dairy cattle production. Animal Health Research Reviews, 2008, 9, 159-167.	1.4	85
103	The Streptomycin-Sulfadiazine-Tetracycline Antimicrobial Resistance Element of Calf-Adapted <i>Escherichia coli < i > Is Widely Distributed among Isolates from Washington State Cattle. Applied and Environmental Microbiology, 2008, 74, 391-395.</i>	1.4	25
104	Molecular Epidemiology of bla CMY-2 Plasmids Carried by Salmonella enterica and Escherichia coli Isolates from Cattle in the Pacific Northwest. Applied and Environmental Microbiology, 2007, 73, 8005-8011.	1.4	40
105	Validation of Mixed-Genome Microarrays as a Method for Genetic Discrimination. Applied and Environmental Microbiology, 2007, 73, 1425-1432.	1.4	10
106	Identification of potential vaccine target antigens by immunoproteomic analysis of a virulent and a non-virulent strain of the fish pathogen Flavobacterium psychrophilum. Diseases of Aquatic Organisms, 2007, 74, 37-47.	0.5	55
107	Using DNA suspension arrays to identify library-independent markers for bacterial source tracking. Water Research, 2007, 41, 3740-3746.	5. 3	8
108	Interactions between the environmental pathogen Listeria monocytogenes and a free-living protozoan (Acanthamoeba castellanii). Environmental Microbiology, 2007, 9, 913-922.	1.8	37

#	Article	IF	Citations
109	Antimicrobial resistance in Salmonella enterica serovar Dublin isolates from beef and dairy sources. Veterinary Microbiology, 2007, 119, 221-230.	0.8	32
110	Dissemination of antimicrobial resistant strains of Campylobacter coli and Campylobacter jejuni among cattle in Washington State and California. Veterinary Microbiology, 2007, 122, 306-315.	0.8	15
111	Assessing genetic diversity in plasmids from Escherichia coli and Salmonella enterica using a mixed-plasmid microarray. Journal of Applied Microbiology, 2006, 100, 15-28.	1.4	21
112	Antimicrobial Drug Resistance Genes Do Not Convey a Secondary Fitness Advantage to Calf-Adapted Escherichia coli. Applied and Environmental Microbiology, 2006, 72, 443-448.	1.4	59
113	Use of a Nonmedicated Dietary Supplement Correlates with Increased Prevalence of Streptomycin-Sulfa-Tetracycline-Resistant Escherichia coli on a Dairy Farm. Applied and Environmental Microbiology, 2006, 72, 4583-4588.	1.4	88
114	Identification of Specific Gene Sequences Conserved in Contemporary Epidemic Strains of Salmonella enterica. Applied and Environmental Microbiology, 2006, 72, 6938-6947.	1.4	27
115	Variability in the Region Downstream of the bla CMY-2 \hat{l}^2 -Lactamase Gene in Escherichia coli and Salmonella enterica Plasmids. Antimicrobial Agents and Chemotherapy, 2006, 50, 1590-1593.	1.4	48
116	Using DNA Microarrays To Identify Library-Independent Markers for Bacterial Source Tracking. Applied and Environmental Microbiology, 2006, 72, 1843-1851.	1.4	32
117	Polymorphisms in 16S rRNA genes of Flavobacterium psychrophilum correlate with elastin hydrolysis and tetracycline resistance. Diseases of Aquatic Organisms, 2005, 65, 209-216.	0.5	44
118	Suspension Microarray with Dendrimer Signal Amplification Allows Direct and High-Throughput Subtyping of Listeria monocytogenes from Genomic DNA. Journal of Clinical Microbiology, 2005, 43, 3255-3259.	1.8	51
119	Combining Suppression Subtractive Hybridization and Microarrays To Map the Intraspecies Phylogeny of Flavobacteriumpsychrophilum. Infection and Immunity, 2005, 73, 3799-3802.	1.0	33
120	Genetic Diversity of Listeria monocytogenes Strains from a High-Prevalence Dairy Farm. Applied and Environmental Microbiology, 2005, 71, 5893-5899.	1.4	71
121	Challenges and Opportunities for Pathogen Detection Using DNA Microarrays. Critical Reviews in Microbiology, 2005, 31, 91-99.	2.7	156
122	Quantitative oligonucleotide microarray fingerprinting of Salmonella enterica isolates. Nucleic Acids Research, 2004, 32, 1848-1856.	6.5	34
123	Detection of Pathogenic Vibrio spp. in Shellfish by Using Multiplex PCR and DNA Microarrays. Applied and Environmental Microbiology, 2004, 70, 7436-7444.	1.4	187
124	Selective Discrimination of Listeria monocytogenes Epidemic Strains by a Mixed-Genome DNA Microarray Compared to Discrimination by Pulsed-Field Gel Electrophoresis, Ribotyping, and Multilocus Sequence Typing. Journal of Clinical Microbiology, 2004, 42, 5270-5276.	1.8	90
125	Simultaneous Detection of Marine Fish Pathogens by Using Multiplex PCR and a DNA Microarray. Journal of Clinical Microbiology, 2004, 42, 1414-1419.	1.8	115
126	Role of Calf-Adapted Escherichia coli in Maintenance of Antimicrobial Drug Resistance in Dairy Calves. Applied and Environmental Microbiology, 2004, 70, 752-757.	1.4	158

#	Article	IF	CITATIONS
127	Amplicon secondary structure prevents target hybridization to oligonucleotide microarrays. Biosensors and Bioelectronics, 2004, 20, 728-735.	5.3	56
128	Simultaneous Discrimination between 15 Fish Pathogens by Using 16S Ribosomal DNA PCR and DNA Microarrays. Applied and Environmental Microbiology, 2004, 70, 4216-4221.	1.4	94
129	Discrimination among Listeria monocytogenes isolates using a mixed genome DNA microarray. Veterinary Microbiology, 2003, 92, 351-362.	0.8	87
130	Detection of bacterial pathogens in environmental samples using DNA microarrays. Journal of Microbiological Methods, 2003, 53, 235-243.	0.7	236
131	Listeria monocytogenes Serotype Identification by PCR. Journal of Clinical Microbiology, 2003, 41, 5537-5540.	1.8	149
132	Mixed-Genome Microarrays Reveal Multiple Serotype and Lineage-Specific Differences among Strains of Listeria monocytogenes. Journal of Clinical Microbiology, 2003, 41, 632-639.	1.8	110
133	Evaluation of Pulsed-Field Gel Electrophoresis as a Tool for Determining the Degree of Genetic Relatedness between Strains of Escherichia coli O157:H7. Journal of Clinical Microbiology, 2003, 41, 1843-1849.	1.8	121
134	Variation in Biofilm Formation among Strains of Listeriamonocytogenes. Applied and Environmental Microbiology, 2003, 69, 7336-7342.	1.4	443
135	Identifying Antimicrobial Resistance Genes with DNA Microarrays. Antimicrobial Agents and Chemotherapy, 2003, 47, 3290-3295.	1.4	157
136	Fingerprinting Closely Related Xanthomonas Pathovars with Random Nonamer Oligonucleotide Microarrays. Applied and Environmental Microbiology, 2002, 68, 6361-6370.	1.4	45
137	PCR Detection of Specific Pathogens in Water:Â A Risk-Based Analysis. Environmental Science & Emp; Technology, 2002, 36, 2754-2759.	4.6	104
138	Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays. International Journal of Food Microbiology, 2001, 67, 71-80.	2.1	177
139	Automated immunomagnetic separation and microarray detection of E. coli O157:H7 from poultry carcass rinse. International Journal of Food Microbiology, 2001, 70, 143-154.	2.1	52
140	Direct Detection of 16S rRNA in Soil Extracts by Using Oligonucleotide Microarrays. Applied and Environmental Microbiology, 2001, 67, 4708-4716.	1.4	272
141	Considerations for measuring genetic variation and population structure with multilocus fingerprinting. Molecular Ecology, 1998, 7, 1337-1346.	2.0	15
142	Demography of an Insular Population of Spotted Owls. , 1992, , 803-814.		2
143	The Future of Microbial Source Tracking Studies. , 0, , 235-277.		13