Yongku Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8569178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoscale Wrinkled Cu as a Current Collector for High-Loading Graphite Anode in Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 2576-2583.	8.0	15
2	Mechanism for Preserving Volatile Nitrogen Dioxide and Sustainable Redox Mediation in the Nonaqueous Lithium–Oxygen Battery. ACS Applied Materials & Interfaces, 2021, 13, 8159-8168.	8.0	3
3	Fabrication of Highly Monodisperse and Small-Grain Platinum Hole–Cylinder Nanoparticles as a Cathode Catalyst for Li–O ₂ Batteries. ACS Applied Energy Materials, 2021, 4, 2514-2521.	5.1	3
4	Polyelemental Nanoparticles as Catalysts for a Li–O ₂ Battery. ACS Nano, 2021, 15, 4235-4244.	14.6	38
5	Extraordinary dendrite-free Li deposition on highly uniform facet wrinkled Cu substrates in carbonate electrolytes. Nano Energy, 2021, 82, 105736.	16.0	24
6	Stable Cycling of a 4 V Class Lithium Polymer Battery Enabled by In Situ Cross-Linked Ethylene Oxide/Propylene Oxide Copolymer Electrolytes with Controlled Molecular Structures. ACS Applied Materials & Interfaces, 2021, 13, 35664-35676.	8.0	7
7	Stable cycling via absolute intercalation in graphite-based lithium-ion battery incorporated by solidified ether-based polymer electrolyte. Materials Advances, 2021, 2, 3898-3905.	5.4	4
8	Free-Standing, Robust, and Stable Li ⁺ Conductive Li(Sr,Zr) ₂ (PO ₄) ₃ /PEO Composite Electrolytes for Solid-State Batteries. ACS Applied Energy Materials, 2021, 4, 13974-13982.	5.1	3
9	Effect of Highly Periodic Au Nanopatterns on Dendrite Suppression in Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 60978-60986.	8.0	14
10	Development of free-standing phosphate/polymer composite electrolyte films for room temperature operating Li+ rechargeable solid-state battery. Solid State Ionics, 2020, 344, 115137.	2.7	9
11	Fishing-net-shaped cobalt oxide microspheres for effective polysulfide reservoirs of rechargeable Li–S battery cathodes. Materials Chemistry and Physics, 2020, 243, 122567.	4.0	5
12	In-situ electrochemical functionalization of carbon materials for high-performance Li–O2 batteries. Journal of Energy Chemistry, 2020, 48, 7-13.	12.9	8
13	Comparative electrochemical property of solvent-free ceramic/polymer hybrid electrolytes incorporating sol-gel prepared Li-phosphates, Li(Al,Ge)(PO4)3 and Li(Al,Ti)(PO4)3. Journal of Alloys and Compounds, 2020, 843, 155878.	5.5	3
14	Pt Nanoparticles-Macroporous Carbon Nanofiber Free-Standing Cathode for High-Performance Li-O ₂ Batteries. Journal of the Electrochemical Society, 2020, 167, 020549.	2.9	9
15	Understanding Reaction Pathways in High Dielectric Electrolytes Using β-Mo ₂ C as a Catalyst for Li–CO ₂ Batteries. ACS Applied Materials & Interfaces, 2020, 12, 32633-32641.	8.0	22
16	Electrical modification of a composite electrode for room temperature operable polyethylene oxide-based lithium polymer batteries. Materials Research Express, 2020, 7, 075504.	1.6	0
17	Macroporous carbon nanofiber decorated with platinum nanorods as free-standing cathodes for high-performance Li–O2 batteries. Carbon, 2019, 154, 448-456.	10.3	10
18	Electrostatically Assembled Silicon–Carbon Composites Employing Amine-Functionalized Carbon Intra-interconnections for Lithium-Ion Battery Anodes. ACS Applied Energy Materials, 2019, 2, 1868-1875.	5.1	6

#	Article	IF	CITATIONS
19	Formation of toroidal Li ₂ O ₂ in non-aqueous Li–O ₂ batteries with Mo ₂ CT _x MXene/CNT composite. RSC Advances, 2019, 9, 41120-41125.	3.6	16
20	Freestanding sulfur-graphene oxide/carbon composite paper as a stable cathode for high performance lithium-sulfur batteries. Electrochimica Acta, 2019, 299, 27-33.	5.2	44
21	Rational design of electrochemically active polymorphic MnOx/rGO composites for Li+-rechargeable battery electrodes. Ceramics International, 2019, 45, 9522-9528.	4.8	3
22	Simultaneous Enhancement of the Performance and Stability of MnO ₂ Based Lithium Ion Battery Anodes by Compositing with Fluorine Terminated Functionalized Graphene Oxide. ChemistrySelect, 2018, 3, 3958-3964.	1.5	3
23	In-situ preparation and unique electrochemical behavior of pore-embedding CoO/Co3O4 intermixed composite for Li+ rechargeable battery electrodes. Journal of Power Sources, 2018, 378, 562-570.	7.8	17
24	Room-Temperature, Ambient-Pressure Chemical Synthesis of Amine-Functionalized Hierarchical Carbon–Sulfur Composites for Lithium–Sulfur Battery Cathodes. ACS Applied Materials & Interfaces, 2018, 10, 4767-4775.	8.0	15
25	Carbon nanofiber@platinum by a coaxial electrospinning and their improved electrochemical performance as a Liâ^'O2 battery cathode. Carbon, 2018, 130, 94-104.	10.3	32
26	Two-Dimensional Phosphorene-Derived Protective Layers on a Lithium Metal Anode for Lithium-Oxygen Batteries. ACS Nano, 2018, 12, 4419-4430.	14.6	115
27	Improved electrochemical performance of ordered mesoporous carbon by incorporating macropores for Li‒O2 battery cathode. Carbon, 2018, 133, 118-126.	10.3	17
28	Tailored Porous ZnCo ₂ O ₄ Nanofibrous Electrocatalysts for Lithium–Oxygen Batteries. Advanced Materials Interfaces, 2018, 5, 1701234.	3.7	9
29	Comparative electrochemical study for the polymorphic MnOx/rGO composites derived from well-stacked MnO2/GO templates as for Li-rechargeable battery electrodes. Electrochimica Acta, 2018, 290, 322-331.	5.2	6
30	Autoxidation in amide-based electrolyte and its suppression for enhanced oxygen efficiency and cycle performance in non-aqueous lithium oxygen battery. Journal of Power Sources, 2017, 347, 186-192.	7.8	12
31	MnMoO ₄ Electrocatalysts for Superior Longâ€Life and Highâ€Rate Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2017, 7, 1601741.	19.5	53
32	Fiber electrode by one-pot wet-spinning of graphene and manganese oxide nanowires for wearable lithium-ion batteries. Journal of Applied Electrochemistry, 2017, 47, 865-875.	2.9	22
33	Enhancement of electrochemical performance of tin-based anode in lithium ion batteries by polyimide containing amino benzoquinone. Electrochimica Acta, 2017, 235, 429-436.	5.2	4
34	Mesoporous amorphous binary Ru–Ti oxides as bifunctional catalysts for non-aqueous Li–O2 batteries. Nanotechnology, 2017, 28, 145401.	2.6	4
35	Facile Synthesis of Compositionâ€Controlled Grapheneâ€Supported PtPd Alloy Nanocatalysts and Their Applications in Methanol Electroâ€Oxidation and Lithiumâ€Oxygen Batteries. Chemistry - A European Journal, 2017, 23, 17136-17143.	3.3	15
36	Highâ€Performance Lithiumâ€Oxygen Battery Electrolyte Derived from Optimum Combination of Solvent and Lithium Salt. Advanced Science, 2017, 4, 1700235.	11.2	43

#	Article	IF	CITATIONS
37	In situ real-time and quantitative investigation on the stability of non-aqueous lithium oxygen battery electrolytes. Journal of Materials Chemistry A, 2016, 4, 6332-6341.	10.3	30
38	Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries. Journal of Power Sources, 2016, 334, 154-161.	7.8	57
39	In situ synthesis of amorphous titanium dioxide supported RuO ₂ as a carbon-free cathode for non-aqueous Li–O ₂ batteries. RSC Advances, 2016, 6, 91779-91782.	3.6	6
40	Hierarchical Ru- and RuO ₂ -foams as high performance electrocatalysts for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2016, 4, 16356-16367.	10.3	56
41	High-rate performance of Ti ³⁺ self-doped TiO ₂ prepared by imidazole reduction for Li-ion batteries. Nanotechnology, 2016, 27, 435401.	2.6	11
42	Hydrous amorphous RuO ₂ nanoparticles supported on reduced graphene oxide for non-aqueous Li–O ₂ batteries. RSC Advances, 2016, 6, 23467-23470.	3.6	11
43	Graphene paper with controlled pore structure for high-performance cathodes in Li–O2 batteries. Carbon, 2016, 100, 265-272.	10.3	42
44	Facile synthesis of palladium nanodendrites supported on graphene nanoplatelets: an efficient catalyst for low overpotentials in lithium–oxygen batteries. Journal of Materials Chemistry A, 2016, 4, 578-586.	10.3	29
45	Electrochemical performance of all-solid lithium ion batteries with a polyaniline film cathode. Journal of Energy Chemistry, 2016, 25, 93-100.	12.9	5
46	In situ synthesis of amorphous RuO ₂ /AZO as a carbon-free cathode material for Li–O ₂ batteries. RSC Advances, 2015, 5, 24175-24177.	3.6	10
47	Superior Lithium Storage Performance using Sequentially Stacked MnO ₂ /Reduced Graphene Oxide Composite Electrodes. ChemSusChem, 2015, 8, 1484-1491.	6.8	33
48	Examination of graphene nanoplatelets as cathode materials for lithium–oxygen batteries by differential electrochemical mass spectrometry. Electrochemistry Communications, 2015, 57, 39-42.	4.7	16
49	Flexible binder-free graphene paper cathodes for high-performance Li-O2 batteries. Carbon, 2015, 93, 625-635.	10.3	74
50	Enhanced energy and O ₂ evolution efficiency using an in situ electrochemically N-doped carbon electrode in non-aqueous Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 18843-18846.	10.3	17
51	Facile fabrication of highly flexible graphene paper for high-performance flexible lithium ion battery anode. RSC Advances, 2015, 5, 3299-3305.	3.6	31
52	Electrodeposited 3D porous silicon/copper films with excellent stability and high rate performance for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 2478.	10.3	58
53	Synthesis and electrochemical properties of gel polymer electrolyte using poly(2-(dimethylamino)ethyl methacrylate-co-methyl methacrylate) for fabricating lithium ion polymer battery. Macromolecular Research, 2014, 22, 875-881.	2.4	4
54	Electrospun nanofibers with a core–shell structure of silicon nanoparticles and carbon nanotubes in carbon for use as lithium-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 15094-15101.	10.3	37

#	Article	IF	CITATIONS
55	Improved cycle efficiency of lithium metal electrodes in Li–O2 batteries by a two-dimensionally ordered nanoporous separator. Journal of Materials Chemistry A, 2014, 2, 9970.	10.3	45
56	An electrochemically grown three-dimensional porous Si@Ni inverse opal structure for high-performance Li ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 6396-6401.	10.3	27
57	Silicon nanoparticle and carbon nanotube loaded carbon nanofibers for use in lithium-ion battery anodes. Synthetic Metals, 2014, 198, 36-40.	3.9	22
58	One-step Microwave Synthesis of Hierarchical Structured LiFePO ₄ using Citric Acid. Bulletin of the Korean Chemical Society, 2014, 35, 2901-2905.	1.9	2
59	Preparation of Nafion/Poly(ether(amino sulfone)) acid-base blend polymer electrolyte membranes and their application to DMFC. Macromolecular Research, 2013, 21, 1314-1321.	2.4	6
60	Lithium polymer cell assembled by in situ chemical cross-linking of ionic liquid electrolyte with phosphazene-based cross-linking agent. Electrochimica Acta, 2013, 89, 359-364.	5.2	15
61	Electrochemical properties of semi-interpenetrating polymer network solid polymer electrolytes based on multi-armed oligo(ethyleneoxy) phosphate. Journal of Power Sources, 2013, 244, 170-176.	7.8	45
62	Direct ultraviolet-assisted conformal coating of nanometer-thick poly(tris(2-(acryloyloxy)ethyl)) Tj ETQq0 0 0 rgBT Sources, 2013, 244, 389-394.	/Overlock 7.8	10 Tf 50 46 22
63	Electrochemical properties of poly(4,4′-diaminodiphenyl sulfone) as a cathode material of lithium secondary batteries. Polymer Bulletin, 2013, 70, 3011-3018.	3.3	3
64	Determination of Li+ Diffusion Coefficients in the LixV2O5 (x = 0 â^ 1) Nanocrystals of Composite Film Cathodes. Analytical Sciences, 2013, 29, 1083-1088.	1.6	4
65	Hole-conducting mediator for stable Sb ₂ S ₃ -sensitized photoelectrochemical solar cells. Journal of Materials Chemistry, 2012, 22, 1107-1111.	6.7	49
66	Enhanced Ionic Conductivity of Semi-IPN Solid Polymer Electrolytes Based on Star-Shaped Oligo(ethyleneoxy)cyclotriphosphazenes. Macromolecules, 2012, 45, 7931-7938.	4.8	65
67	Electrochemical properties of all solid state Li/S battery. Materials Research Bulletin, 2012, 47, 2827-2829.	5.2	12
68	Poly(vinylpyridine-co-styrene) based in situ cross-linked gel polymer electrolyte for lithium-ion polymer batteries. Electrochimica Acta, 2011, 57, 46-51.	5.2	26
69	Cycling performance of a lithium-ion polymer cell assembled by in-situ chemical cross-linking with fluorinated phosphorous-based cross-linking agent. Journal of Power Sources, 2010, 195, 6177-6181.	7.8	30
70	Anion receptor based on cyclic siloxanes substituted with trifluoromethane-sulfonylamide for solid polymer electrolytes. Macromolecular Research, 2010, 18, 266-270.	2.4	2
71	Enhanced ionic conductivity of intrinsic solid polymer electrolytes using multi-armed oligo(ethylene) Tj ETQq1 1 0.	784314 rg 7.8	gBT /Overloo
72	New liquid crystal-embedded PVdF-co-HFP-based polymer electrolytes for dye-sensitized solar cell applications. Macromolecular Research, 2009, 17, 963-968.	2.4	20

#	Article	IF	CITATIONS
73	Ion-conducting hyperbranched PEG electrolytes derived from poly(glycidol). Macromolecular Research, 2009, 17, 141-143.	2.4	7
74	Effect of the cross-linking agent on cycling performances of lithium-ion polymer cells assembled by in situ chemical cross-linking with tris(2-(acryloyloxy)ethyl) phosphate. Journal of Power Sources, 2009, 189, 809-813.	7.8	23
75	In situ crosslinked ionic gel polymer electrolytes for dye sensitized solar cells. Macromolecular Research, 2008, 16, 424-428.	2.4	9
76	Preparation of Nafion/sulfonated poly(phenylsilsesquioxane) nanocomposite as high temperature proton exchange membranes. Journal of Membrane Science, 2008, 322, 466-474.	8.2	49
77	Study on cycling performances of lithium-ion polymer cells assembled by in situ chemical cross-linking with star-shaped siloxane acrylate. Journal of Power Sources, 2008, 178, 837-841.	7.8	18
78	Organic Sensitizers Containing Julolidine Moiety for Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2008, 8, 4761-4766.	0.9	1
79	Unique domain structure of ï€-conjugated tolanethioacetate self-assembled monolayers on Au(111). Ultramicroscopy, 2007, 107, 1000-1003.	1.9	6
80	lonic conductivity and electrochemical properties of cross-linked solid polymer electrolyte using star-shaped siloxane acrylate. Journal of Power Sources, 2007, 165, 92-96.	7.8	43
81	Photopatterning of gold and copper surfaces by using self-assembled monolayers. Current Applied Physics, 2007, 7, 522-527.	2.4	5
82	Lithium polymer batteries using the highly porous membrane filled with solvent-free polymer electrolyte. Electrochimica Acta, 2006, 52, 1567-1570.	5.2	25
83	Synthesis of porous carbons having surface functional groups and their application to direct-methanol fuel cells. Journal of Power Sources, 2006, 158, 1251-1255.	7.8	22
84	Electrochemical characterization of blend polymer electrolytes based on poly(oligo[oxyethylene]oxyterephthaloyl) for rechargeable lithium metal polymer batteries. Journal of Power Sources, 2006, 163, 229-233.	7.8	16
85	Improvement on cycling efficiency of lithium by PEO-based surfactants in cross-linked gel polymer electrolyte. Journal of Power Sources, 2005, 146, 171-175.	7.8	5
86	A new polysiloxane based cross-linker for solid polymer electrolyte. Journal of Power Sources, 2005, 146, 391-396.	7.8	45
87	Electronic Transport through Aromatic Thiol Monolayer Assembled in the Nano Via-Hole Electrode. Japanese Journal of Applied Physics, 2005, 44, 530-534.	1.5	2
88	Single-Electron Tunneling Behavior of Organic-Molecule-Based Electronic Device. Japanese Journal of Applied Physics, 2004, 43, 6503-6506.	1.5	3
89	PREPARATION OF MEROCYANINE SALTS BY TREATMENT OF ACIDS ON SPIROPYRANS AND INVESTIGATION ON THEIR PHOTOCHROMIC BEHAVIORS. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 575-579.	1.8	2
90	Effect of molecular weight on the mechanical properties of MSSQ films. Materials Chemistry and Physics, 2004, 84, 259-262.	4.0	8

#	Article	IF	CITATIONS
91	Effect of poly(ethylene glycol) dimethyl ether plasticizer on ionic conductivity of cross-linked poly[siloxane-g-oligo(ethylene oxide)] solid polymer electrolytes. Macromolecular Research, 2004, 12, 431-436.	2.4	15
92	Porous polyimide films prepared by thermolysis of porogens with hyperbranched structure. Journal of Applied Polymer Science, 2004, 93, 1711-1718.	2.6	4
93	Self-assembled monolayer of the aromatic thioacetate on the gold surface. Materials Science and Engineering C, 2004, 24, 43-46.	7.3	32
94	Doping of polyaniline by thermal acid–base exchange reaction. Materials Science and Engineering C, 2004, 24, 39-41.	7.3	25
95	Layer-by-layer assembly of poly(aniline-N-butylsulfonate)s and their electrochromic properties in an all solid state window. Materials Science and Engineering C, 2004, 24, 57-60.	7.3	13
96	lonic conductivity and lithium ion transport characteristics of gel-type polymer electrolytes using lithium p-[methoxy oligo(ethyleneoxy)] benzenesulfonates. Electrochimica Acta, 2004, 50, 345-349.	5.2	11
97	The polymer electrolyte based on polysiloxane containing both alkyl cyanide and oligo ethylene oxide pendants. Electrochimica Acta, 2004, 50, 311-316.	5.2	17
98	Ionic conductivity and electrochemical properties of cross-linked poly[siloxane-g-oligo(ethylene) Tj ETQq0 0 0 rgB	T /Overloc	k 10 Tf 50 4
99	Investigation on methanol permeability of Nafion modified by self-assembled clay-nanocomposite multilayers. Electrochimica Acta, 2004, 50, 659-662.	5.2	53
100	Proton Conductivity and Methanol Permeability of Sulfonated Polysulfone/PPSQ Composite Polymer Electrolyte Membrane. Journal of the Korean Electrochemical Society, 2004, 7, 89-93.	0.1	1
101	A study of cross-linked PEO gel polymer electrolytes using bisphenol A ethoxylate diacrylate: ionic conductivity and mechanical properties. Journal of Power Sources, 2003, 119-121, 432-437.	7.8	48
102	Molecule-based single electron transistor. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 18, 243-244.	2.7	9
103	Curing and optical properties of thin films prepared by vacuum deposition of acetylene containing triphenylamines. Optical Materials, 2003, 21, 337-341.	3.6	8
104	Solid polymer electrolytes based on cross-linked polysiloxane-g-oligo(ethylene oxide): ionic conductivity and electrochemical properties. Journal of Power Sources, 2003, 119-121, 448-453.	7.8	64
105	PHOTOCHROMIC AND FLUORESCENCE STUDIES OF SPIROPYRAN INDOLINE DERIVATIVES IN THE PRESENCE OF ACIDS. Molecular Crystals and Liquid Crystals, 2003, 406, 169-179.	0.9	4
106	Imaging on a vapor deposited film by photopolymerization of a rod-like molecule consisting of two diacetylenic groups. Macromolecular Research, 2002, 10, 204-208.	2.4	1
107	Molecular wires and gold nanoparticles as molewares for the molecular scale electronics. Current Applied Physics, 2002, 2, 39-45.	2.4	13

108Multilayer thin films of poly(3-[2-(carboxymethoxy)ethyl]thiophene) and its luminescence properties.
Synthetic Metals, 2001, 117, 257-259.3.91

#	Article	IF	CITATIONS
109	Photocured PEO-based solid polymer electrolyte and its application to lithium–polymer batteries. Journal of Power Sources, 2001, 92, 255-259.	7.8	115
110	The protectivity of aluminum and its alloys with transition metals. Journal of Solid State Electrochemistry, 1997, 1, 17-35.	2.5	82
111	Electrochemical properties of polyaniline doped with poly(styrenesulfonic acid). Synthetic Metals, 1992, 52, 319-328.	3.9	77
112	Preparation and properties of polypyrrole/ poly(tetrahydrofuran) composites. Synthetic Metals, 1992, 47, 157-166.	3.9	9