Javier M Di Noia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8567856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of ADAT2/3 molecules in <i>Trypanosoma cruzi</i> and regulation of mucin gene expression by tRNA editing. Biochemical Journal, 2022, 479, 561-580.	3.7	4
2	The uracil-DNA glycosylase UNG protects the fitness of normal and cancer B cells expressing AID. NAR Cancer, 2021, 2, zcaa019.	3.1	10
3	AID overexpression leads to aggressive murine CLL and nonimmunoglobulin mutations that mirror human neoplasms. Blood, 2021, 138, 246-258.	1.4	10
4	Regulation of B Lymphocyte Development by Histone H2A Deubiquitinase BAP1. Frontiers in Immunology, 2021, 12, 626418.	4.8	8
5	SLAM family receptors control pro-survival effectors in germinal center B cells to promote humoral immunity. Journal of Experimental Medicine, 2021, 218, .	8.5	8
6	FAM72A antagonizes UNG2 to promote mutagenic repair during antibody maturation. Nature, 2021, 600, 324-328.	27.8	29
7	AID in Antibody Diversification: There and Back Again. Trends in Immunology, 2020, 41, 586-600.	6.8	91
8	Ibrutinib therapy downregulates AID enzyme and proliferative fractions in chronic lymphocytic leukemia. Blood, 2019, 133, 2056-2068.	1.4	14
9	PRMT5 is essential for B cell development and germinal center dynamics. Nature Communications, 2019, 10, 22.	12.8	61
10	A licensing step links AID to transcription elongation for mutagenesis in B cells. Nature Communications, 2018, 9, 1248.	12.8	35
11	Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Advances in Immunology, 2017, 133, 37-87.	2.2	206
12	Activation-induced cytidine deaminase targets SUV4-20-mediated histone H4K20 trimethylation to class-switch recombination sites. Scientific Reports, 2017, 7, 7594.	3.3	10
13	AID in Somatic Hypermutation and Class Switch Recombination. , 2016, , 115-125.		0
14	Roles for APRIN (PDS5B) in homologous recombination and in ovarian cancer prediction. Nucleic Acids Research, 2016, 44, 10879-10897.	14.5	47
15	UNG protects B cells from AID-induced telomere loss. Journal of Experimental Medicine, 2016, 213, 2459-2472.	8.5	27
16	Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity. Nature Reviews Immunology, 2016, 16, 164-176.	22.7	153
17	Cell-based Assays to Monitor AID Activity. Bio-protocol, 2016, 6, .	0.4	0
18	HSP90 inhibitors decrease AID levels and activity in mice and in human cells. European Journal of Immunology, 2015, 45, 2365-2376.	2.9	14

JAVIER M DI NOIA

#	Article	IF	CITATIONS
19	Consecutive interactions with HSP90 and eEF1A underlie a functional maturation and storage pathway of AID in the cytoplasm. Journal of Experimental Medicine, 2015, 212, 581-596.	8.5	35
20	Autoimmunity and antibody affinity maturation are modulated by genetic variants on mouse chromosome 12. Journal of Autoimmunity, 2015, 58, 90-99.	6.5	4
21	Unequal opportunity during class switching. Nature, 2015, 525, 44-45.	27.8	4
22	Pharmacological manipulation of AID. Oncotarget, 2015, 6, 26550-26551.	1.8	1
23	Consecutive interactions with HSP90 and eEF1A underlie a functional maturation and storage pathway of AID in the cytoplasm. Journal of Cell Biology, 2015, 209, 20910IA64.	5.2	Ο
24	Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proceedings of the United States of America, 2014, 111, 285-290.	7.1	300
25	Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E988-97.	7.1	52
26	Alternative End-Joining and Classical Nonhomologous End-Joining Pathways Repair Different Types of Double-Strand Breaks during Class-Switch Recombination. Journal of Immunology, 2013, 191, 5751-5763.	0.8	43
27	A Combined Nuclear and Nucleolar Localization Motif in Activation-Induced Cytidine Deaminase (AID) Controls Immunoglobulin Class Switching. Journal of Molecular Biology, 2013, 425, 424-443.	4.2	32
28	Separation of Function between Isotype Switching and Affinity Maturation In Vivo during Acute Immune Responses and Circulating Autoantibodies in UNG-Deficient Mice. Journal of Immunology, 2013, 190, 5949-5960.	0.8	32
29	MSH6- or PMS2-deficiency causes re-replication in DT40 B cells, but it has little effect on immunoglobulin gene conversion or on repair of AID-generated uracils. Nucleic Acids Research, 2013, 41, 3032-3046.	14.5	12
30	Activation-induced cytidine deaminase (AID) is necessary for the epithelial–mesenchymal transition in mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2977-86.	7.1	67
31	Origins and Consequences of AID Expression in Lymphoid Neoplasms. Current Immunology Reviews, 2013, 9, 72-85.	1.2	6
32	Optimal functional levels of activation-induced deaminase specifically require the Hsp40 DnaJa1. EMBO Journal, 2012, 31, 679-691.	7.8	35
33	Activation induced deaminase: How much and where?. Seminars in Immunology, 2012, 24, 246-254.	5.6	33
34	Evaluation of a Recombinant Trypanosoma cruzi Mucin-Like Antigen for Serodiagnosis of Chagas' Disease. Vaccine Journal, 2011, 18, 1850-1855.	3.1	46
35	The mechanisms regulating the subcellular localization of AID. Nucleus, 2010, 1, 325-331.	2.2	28
36	Regulation of activation-induced deaminase stability and antibody gene diversification by Hsp90. Journal of Experimental Medicine, 2010, 207, 2751-2765.	8.5	89

JAVIER M DI NOIA

#	Article	IF	CITATIONS
37	Regulatory Mechanisms of AID Function. Modecular Medicine and Medicinal, 2010, , 127-151.	0.4	Ο
38	Active nuclear import and cytoplasmic retention of activation-induced deaminase. Nature Structural and Molecular Biology, 2009, 16, 517-527.	8.2	124
39	Dependence of antibody gene diversification on uracil excision. Journal of Experimental Medicine, 2007, 204, 3209-3219.	8.5	61
40	Molecular Mechanisms of Antibody Somatic Hypermutation. Annual Review of Biochemistry, 2007, 76, 1-22.	11.1	906
41	Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nature Reviews Microbiology, 2006, 4, 229-236.	28.6	278
42	SMUG1 is able to excise uracil from immunoglobulin genes: insight into mutation versus repair. EMBO Journal, 2006, 25, 585-595.	7.8	90
43	Immunocharacterization of the mucin-type proteins from the intracellular stage of Trypanosoma cruzi. Microbes and Infection, 2006, 8, 401-409.	1.9	30
44	Somatic hypermutation at A·T pairs: polymerase error versus dUTP incorporation. Nature Reviews Immunology, 2005, 5, 171-178.	22.7	132
45	The mechanism of somatic hypermutation at A·T pairs remains an open question. Nature Reviews Immunology, 2005, 5, 180-180.	22.7	1
46	The Surface Coat of the Mammal-dwelling Infective Trypomastigote Stage of Trypanosoma cruzi Is Formed by Highly Diverse Immunogenic Mucins. Journal of Biological Chemistry, 2004, 279, 15860-15869.	3.4	79
47	Differential accumulation of mutations localized in particular domains of the mucin genes expressed in the vertebrate host stage of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2004, 133, 81-91.	1.1	32
48	Immunoglobulin gene conversion in chicken DT40 cells largely proceeds through an abasic site intermediate generated by excision of the uracil produced by AID-mediated deoxycytidine deamination. European Journal of Immunology, 2004, 34, 504-508.	2.9	71
49	Mismatch Recognition and Uracil Excision Provide Complementary Paths to Both Ig Switching and the A/T-Focused Phase of Somatic Mutation. Molecular Cell, 2004, 16, 163-171.	9.7	428
50	Immunity through DNA deamination. Trends in Biochemical Sciences, 2003, 28, 305-312.	7.5	214
51	Trypanosoma cruzi clonal diversity and the epidemiology of Chagas' disease. Microbes and Infection, 2003, 5, 419-427.	1.9	101
52	A Trypanosoma cruzi Small Surface Molecule Provides the First Immunological Evidence that Chagas' Disease Is Due to a Single Parasite Lineage. Journal of Experimental Medicine, 2002, 195, 401-413.	8.5	133
53	Trypanosoma cruzi surface mucin TcMuc-e2 expressed on higher eukaryotic cells induces human T cell anergy, which is reversible. Glycobiology, 2002, 12, 25-32.	2.5	26
54	Gene Discovery in the Freshwater Fish Parasite Trypanosoma carassii : Identification of trans -Sialidase-Like and Mucin-Like Genes. Infection and Immunity, 2002, 70, 7140-7144.	2.2	19

JAVIER M DI NOIA

#	Article	IF	CITATIONS
55	Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature, 2002, 419, 43-48.	27.8	541
56	Trypanosoma cruzi Surface Mucins with Exposed Variant Epitopes. Journal of Biological Chemistry, 2000, 275, 27671-27680.	3.4	48
57	AU-rich Elements in the 3′-Untranslated Region of a New Mucin-type Gene Family of Trypanosoma cruzi Confers mRNA Instability and Modulates Translation Efficiency. Journal of Biological Chemistry, 2000, 275, 10218-10227.	3.4	126
58	The Trypanosoma cruzi Mucin Family Is Transcribed from Hundreds of Genes Having Hypervariable Regions. Journal of Biological Chemistry, 1998, 273, 10843-10850.	3.4	74
59	High Diversity in Mucin Genes and Mucin Molecules in Trypanosoma cruzi. Journal of Biological Chemistry, 1996, 271, 32078-32083.	3.4	44
60	The Protozoan Trypanosoma cruzi Has a Family of Genes Resembling the Mucin Genes of Mammalian Cells. Journal of Biological Chemistry, 1995, 270, 24146-24149.	3.4	61