
Randall Espinoza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8567561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Whole-Brain Functional Connectivity Dynamics Associated With Electroconvulsive Therapy Treatment Response. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, 7, 312-322.	1.5	5
2	Modulation of the functional connectome in major depressive disorder by ketamine therapy. Psychological Medicine, 2022, 52, 2596-2605.	4.5	20
3	Parsing the Network Mechanisms of Electroconvulsive Therapy. Biological Psychiatry, 2022, 92, 193-203.	1.3	24
4	Modulation of brain networks during MR-compatible transcranial direct current stimulation. NeuroImage, 2022, 250, 118874.	4.2	11
5	Electroconvulsive Therapy. New England Journal of Medicine, 2022, 386, 667-672.	27.0	81
6	Longitudinal trajectory of response to electroconvulsive therapy associated with transient immune response & amp; white matter alteration post-stimulation. Translational Psychiatry, 2022, 12, 191.	4.8	4
7	Anterior default mode network and posterior insular connectivity is predictive of depressive symptom reduction following serial ketamine infusion. Psychological Medicine, 2022, , 1-11.	4.5	2
8	Effects of Serial Ketamine Infusions on Corticolimbic Functional Connectivity in Major Depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 735-744.	1.5	15
9	Hippocampal subregions and networks linked with antidepressant response to electroconvulsive therapy. Molecular Psychiatry, 2021, 26, 4288-4299.	7.9	25
10	Subcallosal Cingulate Structural Connectivity Differs in Responders and Nonresponders to Electroconvulsive Therapy. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 10-19.	1.5	5
11	Depression treatment response to ketamine: sex-specific role of interleukin-8, but not other inflammatory markers. Translational Psychiatry, 2021, 11, 167.	4.8	22
12	Elevated body weight modulates subcortical volume change and associated clinical response following electroconvulsive therapy. Journal of Psychiatry and Neuroscience, 2021, 46, E418-E426.	2.4	4
13	Dynamic Functional Connectivity Predicts Treatment Response to Electroconvulsive Therapy in Major Depressive Disorder. Frontiers in Human Neuroscience, 2021, 15, 689488.	2.0	15
14	Interleukin-8 and lower severity of depression in females, but not males, with treatment-resistant depression. Journal of Psychiatric Research, 2021, 140, 350-356.	3.1	12
15	Accounting for symptom heterogeneity can improve neuroimaging models of antidepressant response after electroconvulsive therapy. Human Brain Mapping, 2021, 42, 5322-5333.	3.6	9
16	Ketamine's modulation of cerebro-cerebellar circuitry during response inhibition in major depression. NeuroImage: Clinical, 2021, 32, 102792.	2.7	10
17	Brain Changes Induced by Electroconvulsive Therapy Are Broadly Distributed. Biological Psychiatry, 2020, 87, 451-461.	1.3	72
18	Depressive Symptom Dimensions in Treatment-Resistant Major Depression and Their Modulation With Electroconvulsive Therapy. Journal of ECT, 2020, 36, 123-129.	0.6	12

RANDALL ESPINOZA

#	Article	IF	CITATIONS
19	Preliminary prediction of individual response to electroconvulsive therapy using whole-brain functional magnetic resonance imaging data. NeuroImage: Clinical, 2020, 26, 102080.	2.7	26
20	Acute changes in cerebral blood flow after single-infusion ketamine in major depression: A pilot study. Neurology Psychiatry and Brain Research, 2020, 38, 5-11.	2.0	8
21	Modulation of inhibitory control networks relate to clinical response following ketamine therapy in major depression. Translational Psychiatry, 2020, 10, 260.	4.8	25
22	Inflammation and depression treatment response to electroconvulsive therapy: Sex-specific role of interleukin-8. Brain, Behavior, and Immunity, 2020, 89, 59-66.	4.1	23
23	Modulation of amygdala reactivity following rapidly acting interventions for major depression. Human Brain Mapping, 2020, 41, 1699-1710.	3.6	46
24	Single and repeated ketamine treatment induces perfusion changes in sensory and limbic networks in major depressive disorder. European Neuropsychopharmacology, 2020, 33, 89-100.	0.7	27
25	Electroconvulsive therapy treatment responsive multimodal brain networks. Human Brain Mapping, 2020, 41, 1775-1785.	3.6	20
26	Clarifying the Relationship Between Benzodiazepines and Dementia. Journal of the American Medical Directors Association, 2020, 21, 143-145.	2.5	6
27	Structural changes induced by electroconvulsive therapy are associated with clinical outcome. Brain Stimulation, 2020, 13, 696-704.	1.6	31
28	Electroconvulsive Therapy During COVID-19. Journal of ECT, 2020, 36, 78-79.	0.6	41
29	Variations in Hippocampal White Matter Diffusivity Differentiate Response to Electroconvulsive Therapy in Major Depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 300-309.	1.5	17
30	Mechanisms of Antidepressant Response to Electroconvulsive Therapy Studied With Perfusion Magnetic Resonance Imaging. Biological Psychiatry, 2019, 85, 466-476.	1.3	43
31	Electric field causes volumetric changes in the human brain. ELife, 2019, 8, .	6.0	57
32	SMRI Biomarkers Predict Electroconvulsive Treatment Outcomes: Accuracy with Independent Data Sets. Neuropsychopharmacology, 2018, 43, 1078-1087.	5.4	49
33	Fronto-Temporal Connectivity Predicts ECT Outcome in Major Depression. Frontiers in Psychiatry, 2018, 9, 92.	2.6	58
34	Volume of the Human Hippocampus and Clinical Response Following Electroconvulsive Therapy. Biological Psychiatry, 2018, 84, 574-581.	1.3	138
35	Inflammation and Improvement of Depression Following Electroconvulsive Therapy in Treatment-Resistant Depression. Journal of Clinical Psychiatry, 2018, 79, 17m11597.	2.2	63
36	Using probabilistic tractography to target the subcallosal cingulate cortex in patients with treatment resistant depression. Psychiatry Research - Neuroimaging, 2017, 261, 72-74.	1.8	32

RANDALL ESPINOZA

#	Article	IF	CITATIONS
37	The Global ECT-MRI Research Collaboration (GEMRIC): Establishing a multi-site investigation of the neural mechanisms underlying response to electroconvulsive therapy. NeuroImage: Clinical, 2017, 14, 422-432.	2.7	68
38	Short- and Long-term Cognitive Outcomes in Patients With Major Depression Treated With Electroconvulsive Therapy. Journal of ECT, 2017, 33, 278-285.	0.6	48
39	Inter and intra-hemispheric structural imaging markers predict depression relapse after electroconvulsive therapy: a multisite study. Translational Psychiatry, 2017, 7, 1270.	4.8	21
40	Neurochemical correlates of rapid treatment response to electroconvulsive therapy in patients with major depression. Journal of Psychiatry and Neuroscience, 2017, 42, 6-16.	2.4	108
41	Effect of Electroconvulsive Therapy on Striatal Morphometry in Major Depressive Disorder. Neuropsychopharmacology, 2016, 41, 2481-2491.	5.4	74
42	Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex. Translational Psychiatry, 2016, 6, e832-e832.	4.8	91
43	Variations in myo-inositol in fronto-limbic regions and clinical response to electroconvulsive therapy in major depression. Journal of Psychiatric Research, 2016, 80, 45-51.	3.1	16
44	Structural Plasticity of the Hippocampus and Amygdala Induced by Electroconvulsive Therapy in Major Depression. Biological Psychiatry, 2016, 79, 282-292.	1.3	241
45	Modulation of Intrinsic Brain Activity by Electroconvulsive Therapy in Major Depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 77-86.	1.5	50
46	Structural connectivity and response to ketamine therapy in major depression: A preliminary study. Journal of Affective Disorders, 2016, 190, 836-841.	4.1	44
47	Desynchronization and Plasticity of Striato-frontal Connectivity in Major Depressive Disorder. Cerebral Cortex, 2016, 26, 4337-4346.	2.9	37
48	Random forest classification of depression status based on subcortical brain morphometry following electroconvulsive therapy. , 2015, 2015, 92-96.		10
49	Gauging Interest in Geriatric Psychiatry Among Psychiatry Residents - Factors and Outcomes. American Journal of Geriatric Psychiatry, 2015, 23, S78-S79.	1.2	0
50	Medicare, Medicaid, and Mental Health Care. JAMA - Journal of the American Medical Association, 2015, 314, 2231.	7.4	7
51	Delusional Parasitosis In The Elderly: A Condition In Which Psychiatry, Neurology, and Endocrinology May Intersect. American Journal of Geriatric Psychiatry, 2014, 22, S94-S95.	1.2	0
52	On The Move: Home-Based Experiences and Educational Milestones in Geriatric Psychiatry Fellowship. American Journal of Geriatric Psychiatry, 2014, 22, S26.	1.2	0
53	Neuromodulation for Depression. Neurosurgery Clinics of North America, 2014, 25, 103-116.	1.7	52
54	Use of Dexmedetomidine for Prevention of Post-Ictal Agitation after Electroconvulsive Therapy in the Elderly versus the Young. American Journal of Geriatric Psychiatry, 2014, 22, S76.	1.2	3

Randall Espinoza

#	Article	IF	CITATIONS
55	Depression and Anxiety in the Older Patient with Cancer. , 2012, , 133-152.		0
56	Potential surgical targets for deep brain stimulation in treatment-resistant depression. Neurosurgical Focus, 2008, 25, E3.	2.3	83
57	The Utility of PET Brain Imaging in the Initial Evaluation of Dementia. Journal of the American Medical Directors Association, 2007, 8, 150-157.	2.5	14
58	THE EFFECT OF RISPERIDONE ON NURSING BURDEN ASSOCIATED WITH CARING FOR PATIENTS WITH DEMENTIA. Journal of the American Geriatrics Society, 2005, 53, 1261-1262.	2.6	1
59	Response to Letter From Dr. P.K. Gillman. Journal of the American Medical Directors Association, 2005, 6, 423-425.	2.5	0
60	Interaction of Serotonergic Antidepressants and Opioid Analgesics: Is Serotonin Syndrome Going Undetected?. Journal of the American Medical Directors Association, 2005, 6, 265-269.	2.5	65
61	Electroconvulsive Therapy in the Long-term Care Setting: An Overview of Controversies in Practice. Journal of the American Medical Directors Association, 2004, 5, S54-S58.	2.5	0
62	Assessing Antipsychotic Effectiveness in Dementia: A Factor Analysis Approach. Journal of the American Medical Directors Association, 2003, 4, 113-114.	2.5	0
63	Electroconvulsive Therapy in the Long-term Care Setting: An Overview of Controversies in Practice. Journal of the American Medical Directors Association, 2003, 4, 40-44.	2.5	1