Xuefen Le Bourhis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/856749/publications.pdf

Version: 2024-02-01

69 papers

4,207 citations

33 h-index 110387 64 g-index

71 all docs

71 docs citations

times ranked

71

6597 citing authors

#	Article	IF	CITATIONS
1	Metabolic state of glioma stem cells and nontumorigenic cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16062-16067.	7.1	433
2	Radiationâ€Induced Reprogramming of Breast Cancer Cells. Stem Cells, 2012, 30, 833-844.	3.2	329
3	In Vivo Imaging, Tracking, and Targeting of Cancer Stem Cells. Journal of the National Cancer Institute, 2009, 101, 350-359.	6.3	247
4	Nerve Growth Factor Stimulates Proliferation and Survival of Human Breast Cancer Cells through Two Distinct Signaling Pathways. Journal of Biological Chemistry, 2001, 276, 17864-17870.	3.4	200
5	<i>H19</i> non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget, 2015, 6, 29209-29223.	1.8	193
6	Ionizing Radiation Activates the Nrf2 Antioxidant Response. Cancer Research, 2010, 70, 8886-8895.	0.9	176
7	Nerve Growth Factor Is a Potential Therapeutic Target in Breast Cancer. Cancer Research, 2008, 68, 346-351.	0.9	153
8	Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Research, 2010, 12, R13.	5.0	140
9	Metabolic differences in breast cancer stem cells and differentiated progeny. Breast Cancer Research and Treatment, 2014, 146, 525-534.	2.5	114
10	The role of long non-coding RNAs in genome formatting and expression. Frontiers in Genetics, 2015, 6, 165.	2.3	107
11	Brain-Derived Neurotrophic Factor and Neurotrophin-4/5 Are Expressed in Breast Cancer and Can Be Targeted to Inhibit Tumor Cell Survival. Clinical Cancer Research, 2011, 17, 1741-1752.	7.0	105
12	Nerve growth factor promotes breast cancer angiogenesis by activating multiple pathways. Molecular Cancer, 2010, 9, 157.	19.2	98
13	Role of p75 neurotrophin receptor in stem cell biology: more than just a marker. Cellular and Molecular Life Sciences, 2014, 71, 2467-2481.	5.4	92
14	How Do Gangliosides Regulate RTKs Signaling?. Cells, 2013, 2, 751-767.	4.1	88
15	Nerve Growth Factor Receptors and Signaling in Breast Cancer. Current Cancer Drug Targets, 2004, 4, 463-470.	1.6	86
16	The ganglioside GD2 induces the constitutive activation of c-Met in MDA-MB-231 breast cancer cells expressing the GD3 synthase. Glycobiology, 2012, 22, 806-816.	2.5	83
17	The long non-coding RNA H19: an active player with multiple facets to sustain the hallmarks of cancer. Cellular and Molecular Life Sciences, 2019, 76, 4673-4687.	5 . 4	82
18	Stable expression of sialyl-Tn antigen in T47-D cells induces a decrease of cell adhesion and an increase of cell migration. Breast Cancer Research and Treatment, 2005, 90, 77-84.	2. 5	77

#	Article	IF	Citations
19	Regulation of Human Breast Cancer by the Long Non-Coding RNA H19. International Journal of Molecular Sciences, 2017, 18, 2319.	4.1	74
20	The RNA-Binding Protein Musashi-1 Regulates Proteasome Subunit Expression in Breast Cancer- and Glioma-Initiating Cells. Stem Cells, 2014, 32, 135-144.	3.2	70
21	Pro-nerve Growth Factor Induces Autocrine Stimulation of Breast Cancer Cell Invasion through Tropomyosin-related Kinase A (TrkA) and Sortilin Protein. Journal of Biological Chemistry, 2012, 287, 1923-1931.	3.4	69
22	Expression of sialyl-Tn antigen in breast cancer cells transfected with the human CMP-Neu5Ac: GalNAc alpha2,6-sialyltransferase (ST6GalNac I) cDNA. Glycoconjugate Journal, 2001, 18, 883-893.	2.7	65
23	GD3 Synthase Expression Enhances Proliferation and Tumor Growth of MDA-MB-231 Breast Cancer Cells through c-Met Activation. Molecular Cancer Research, 2010, 8, 1526-1535.	3.4	64
24	Tumor cells with low proteasome subunit expression predict overall survival in head and neck cancer patients. BMC Cancer, 2014, 14, 152.	2.6	56
25	Radiation-Induced Notch Signaling in Breast Cancer Stem Cells. International Journal of Radiation Oncology Biology Physics, 2013, 87, 609-618.	0.8	55
26	Neurotrophin signaling in cancer stem cells. Cellular and Molecular Life Sciences, 2016, 73, 1859-1870.	5.4	55
27	G _{D3} synthase overexpression enhances proliferation and migration of MDA-MB-231 breast cancer cells. Biological Chemistry, 2009, 390, 601-609.	2.5	54
28	Overexpression of p75NTR increases survival of breast cancer cells through p21waf1. Cellular Signalling, 2010, 22, 1864-1873.	3.6	54
29	Nerve Growth Factor and proNGF Simultaneously Promote Symmetric Self-Renewal, Quiescence, and Epithelial to Mesenchymal Transition to Enlarge the Breast Cancer Stem Cell Compartment. Stem Cells, 2015, 33, 342-353.	3.2	50
30	Normal breast epithelial cells induce p53-dependent apoptosis and p53-independent cell cycle arrest of breast cancer cells. Breast Cancer Research and Treatment, 2002, 71, 269-280.	2.5	42
31	Proteomics of Breast Cancer: The Quest for Markers and Therapeutic Targets. Journal of Proteome Research, 2008, 7, 1403-1411.	3.7	41
32	Cross-Talk between Mesenchyme and Epithelium Increases H19 Gene Expression during Scattering and Morphogenesis of Epithelial Cells. Experimental Cell Research, 2002, 275, 215-229.	2.6	39
33	Normal Breast Epithelial Cells Induce Apoptosis of Breast Cancer Cells via Fas Signaling. Experimental Cell Research, 2002, 275, 31-43.	2.6	36
34	The histone lysine methyltransferase Ezh2 is required for maintenance of the intestine integrity and for caudal fin regeneration in zebrafish. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 1079-1093.	1.9	35
35	Nerve Growth Factor Receptor TrkA Signaling in Breast Cancer Cells Involves Ku70 to Prevent Apoptosis. Molecular and Cellular Proteomics, 2007, 6, 1842-1854.	3.8	34
36	Oxygen Levels Do Not Determine Radiation Survival of Breast Cancer Stem Cells. PLoS ONE, 2012, 7, e34545.	2.5	33

3

#	Article	IF	Citations
37	Targeted elimination of breast cancer cells with low proteasome activity is sufficient for tumor regression. Breast Cancer Research and Treatment, 2013, 141, 197-203.	2.5	31
38	Genetic Engineering of Zebrafish in Cancer Research. Cancers, 2020, 12, 2168.	3.7	30
39	Role of endothelial progenitor cells in breast cancer angiogenesis: from fundamental research to clinical ramifications. Breast Cancer Research and Treatment, 2010, 120, 17-24.	2.5	28
40	Proteomics Demonstration That Normal Breast Epithelial Cells Can Induce Apoptosis of Breast Cancer Cells through Insulin-like Growth Factor-binding Protein-3 and Maspin. Molecular and Cellular Proteomics, 2007, 6, 1239-1247.	3.8	27
41	Differential Effects of the Proteasome Inhibitor NPI-0052 against Glioma Cells. Translational Oncology, 2010, 3, 50-55.	3.7	27
42	NGF-induced TrkA/CD44 association is involved in tumor aggressiveness and resistance to lestaurtinib. Oncotarget, 2015, 6, 9807-9819.	1.8	27
43	Enhancement of Breast Cancer Cell Aggressiveness by IncRNA H19 and its Mir-675 Derivative: Insight into Shared and Different Actions. Cancers, 2020, 12, 1730.	3.7	26
44	Radioresistance of prostate cancer cells with low proteasome activity. Prostate, 2012, 72, 868-874.	2.3	25
45	ProNGF increases breast tumor aggressiveness through functional association of TrkA with EphA2. Cancer Letters, 2019, 449, 196-206.	7.2	25
46	Accumulation of Unusual Gangliosides GQ3 and GP3 in Breast Cancer Cells Expressing the GD3 Synthase. Molecules, 2012, 17, 9559-9572.	3.8	22
47	Synuclein gamma expression enhances radiation resistance of breast cancer cells. Oncotarget, 2018, 9, 27435-27447.	1.8	22
48	The Polycomb Group Protein Pcgf1 Is Dispensable in Zebrafish but Involved in Early Growth and Aging. PLoS ONE, 2016, 11, e0158700.	2.5	18
49	Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development. Scientific Reports, 2019, 9, 4319.	3.3	17
50	Robot-Assisted SpiderMass for <i>In Vivo</i> Real-Time Topography Mass Spectrometry Imaging. Analytical Chemistry, 2021, 93, 14383-14391.	6.5	16
51	Ku86 is important for TrkA overexpressionâ€induced breast cancer cell invasion. Proteomics - Clinical Applications, 2010, 4, 580-590.	1.6	15
52	Vimentin Promotes the Aggressiveness of Triple Negative Breast Cancer Cells Surviving Chemotherapeutic Treatment. Cells, 2021, 10, 1504.	4.1	14
53	Propagation and Maintenance of Cancer Stem Cells: A Major Influence of the Long Non-Coding RNA H19. Cells, 2020, 9, 2613.	4.1	12
54	Proteome changes induced by overexpression of the p75 neurotrophin receptor (p75NTR) in breast cancer cells. International Journal of Developmental Biology, 2011, 55, 801-809.	0.6	11

#	Article	IF	Citations
55	CD44 and CD24 Expression and Prognostic Significance in Canine Mammary Tumors. Veterinary Pathology, 2019, 56, 377-388.	1.7	11
56	Combining genotypic and phenotypic analyses on single mutant zebrafish larvae. MethodsX, 2018, 5, 244-256.	1.6	10
57	H3.3K27M Mutation Controls Cell Growth and Resistance to Therapies in Pediatric Glioma Cell Lines. Cancers, 2021, 13, 5551.	3.7	10
58	Role of GD3 Synthase ST8Sia I in Cancers. Cancers, 2022, 14, 1299.	3.7	10
59	Developing a MEMS Device with Built-in Microfluidics for Biophysical Single Cell Characterization. Micromachines, 2018, 9, 275.	2.9	9
60	Transcriptomic Analysis of Breast Cancer Stem Cells and Development of a pALDH1A1:mNeptune Reporter System for Live Tracking. Proteomics, 2019, 19, e1800454.	2.2	7
61	s-SHIP Promoter Expression Identifies Mouse Mammary Cancer Stem Cells. Stem Cell Reports, 2019, 13, 10-20.	4.8	7
62	Normal Breast Epithelial Cells Induce Apoptosis of MCF-7 Breast Cancer Cells through a p53-Mediated Pathway. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2000, 3, 338-344.	1.6	6
63	Evofosfamide Is Effective against Pediatric Aggressive Glioma Cell Lines in Hypoxic Conditions and Potentiates the Effect of Cytotoxic Chemotherapy and Ionizing Radiations. Cancers, 2021, 13, 1804.	3.7	5
64	Catch-22: does breast cancer radiotherapy have negative impacts too?. Future Oncology, 2012, 8, 643-645.	2.4	2
65	Expression and Prognostic Significance of Neurotrophins and Their Receptors in Canine Mammary Tumors. Veterinary Pathology, 2020, 57, 507-519.	1.7	2
66	The Polycomb Orthologues in Teleost Fishes and Their Expression in the Zebrafish Model. Genes, 2020, 11, 362.	2.4	2
67	Loss of Polycomb Repressive Complex 2 Function Alters Digestive Organ Homeostasis and Neuronal Differentiation in Zebrafish. Cells, 2021, 10, 3142.	4.1	1
68	WhatsApp com between glioma stem cells and differentiated cells to sustain tumor growth. Stem Cell Investigation, 2018, 5, 28-28.	3.0	0
69	Developing A Mems Device for High-Throughput Multi-Parameter Single Cell Biophysical Analysis. , 2021, , .		0