Jakob von Moltke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8567048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	E-Protein Inhibition in ILC2 Development Shapes the Function of Mature ILC2s during Allergic Airway Inflammation. Journal of Immunology, 2022, 208, 1007-1020.	0.8	2
2	Bile acid–sensitive tuft cells regulate biliary neutrophil influx. Science Immunology, 2022, 7, eabj1080.	11.9	23
3	Epithelial STAT6 O-GlcNAcylation drives a concerted anti-helminth alarmin response dependent on tuft cell hyperplasia and Gasdermin C. Immunity, 2022, 55, 623-638.e5.	14.3	45
4	Tuning tuft cells: new ligands and effector functions reveal tissue-specific function. Current Opinion in Immunology, 2021, 68, 98-106.	5.5	38
5	PGD2 and CRTH2 counteract Type 2 cytokine–elicited intestinal epithelial responses during helminth infection. Journal of Experimental Medicine, 2021, 218, .	8.5	31
6	Multiomic analysis defines the first microRNA atlas across all small intestinal epithelial lineages and reveals novel markers of almost all major cell types. American Journal of Physiology - Renal Physiology, 2021, 321, G668-G681.	3.4	7
7	A three course menu for ILC and bystander T cell activation. Current Opinion in Immunology, 2020, 62, 15-21.	5.5	17
8	Tuft-Cell-Derived Leukotrienes Drive Rapid Anti-helminth Immunity in the Small Intestine but Are Dispensable for Anti-protist Immunity. Immunity, 2020, 52, 528-541.e7.	14.3	135
9	Differential Activation of the Transcription Factor IRF1ÂUnderlies the Distinct Immune Responses Elicited by Type I and Type III Interferons. Immunity, 2019, 51, 451-464.e6.	14.3	179
10	The Immune Function of Tuft Cells at Gut Mucosal Surfaces and Beyond. Journal of Immunology, 2019, 202, 1321-1329.	0.8	90
11	CIRCling the wagons to protect intestinal stem cells. Nature Immunology, 2019, 20, 114-116.	14.5	1
12	Sentinels of the Type 2 Immune Response. Trends in Immunology, 2018, 39, 99-111.	6.8	27
13	The cysteinyl leukotriene 3 receptor regulates expansion of IL-25–producing airway brush cells leading to type 2 inflammation. Science Immunology, 2018, 3, .	11.9	125
14	Detection of Succinate by Intestinal Tuft Cells Triggers a Type 2 Innate Immune Circuit. Immunity, 2018, 49, 33-41.e7.	14.3	380
15	Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature, 2018, 559, 627-631.	27.8	221
16	A Metabolite-Triggered Tuft Cell-ILC2 Circuit Drives Small Intestinal Remodeling. Cell, 2018, 174, 271-284.e14.	28.9	320
17	Interpreting heterogeneity in intestinal tuft cell structure and function. Journal of Clinical Investigation, 2018, 128, 1711-1719.	8.2	54
18	NAIP-NLRC4 Inflammasomes Coordinate Intestinal Epithelial Cell Expulsion with Eicosanoid and IL-18 Release via Activation of Caspase-1 and -8. Immunity, 2017, 46, 649-659	14.3	332

JAKOB VON MOLTKE

#	Article	IF	CITATIONS
19	Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s. Journal of Experimental Medicine, 2017, 214, 27-37.	8.5	132
20	NAIP/NLRC4 inflammasome activation in MRP8+ cells is sufficient to cause systemic inflammatory disease. Nature Communications, 2017, 8, 2209.	12.8	25
21	MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation. Journal of Experimental Medicine, 2017, 214, 3627-3643.	8.5	79
22	Tuft-cell-derived IL-25 regulates an intestinal ILC2–epithelial response circuit. Nature, 2016, 529, 221-225.	27.8	921
23	I-L-C-2 it: type 2 immunity and group 2 innate lymphoid cells in homeostasis. Current Opinion in Immunology, 2014, 31, 58-65.	5.5	48
24	Type 2 innate lymphoid cells control eosinophil homeostasis. Nature, 2013, 502, 245-248.	27.8	861
25	Recognition of Bacteria by Inflammasomes. Annual Review of Immunology, 2013, 31, 73-106.	21.8	367
26	Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature, 2012, 490, 107-111.	27.8	399
27	The <i>N</i> -Ethyl- <i>N</i> -Nitrosourea-Induced <i>Goldenticket</i> Mouse Mutant Reveals an Essential Function of <i>Sting</i> in the <i>In Vivo</i> Interferon Response to <i>Listeria monocytogenes</i> and Cyclic Dinucleotides. Infection and Immunity, 2011, 79, 688-694.	2.2	492
28	Differential Requirement for Caspase-1 Autoproteolysis in Pathogen-Induced Cell Death and Cytokine Processing. Cell Host and Microbe, 2010, 8, 471-483.	11.0	514
29	Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nature Immunology, 2008, 9, 1171-1178.	14.5	428