
David Tollervey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8567016/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Coding-Sequence Determinants of Gene Expression in <i>Escherichia coli</i> . Science, 2009, 324, 255-258.	12.6	1,255
2	Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding. Cell, 2013, 153, 654-665.	28.9	1,164
3	The Many Pathways of RNA Degradation. Cell, 2009, 136, 763-776.	28.9	978
4	The Exosome: A Conserved Eukaryotic RNA Processing Complex Containing Multiple 3′→5′ Exoribonucleases. Cell, 1997, 91, 457-466.	28.9	859
5	RNA Degradation by the Exosome Is Promoted by a Nuclear Polyadenylation Complex. Cell, 2005, 121, 713-724.	28.9	786
6	Ribosome Synthesis inSaccharomyces cerevisiae. Annual Review of Genetics, 1999, 33, 261-311.	7.6	704
7	RNA-quality control by the exosome. Nature Reviews Molecular Cell Biology, 2006, 7, 529-539.	37.0	570
8	Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO Journal, 1999, 18, 5399-5410.	7.8	529
9	Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell, 1993, 72, 443-457.	28.9	482
10	A new system for naming ribosomal proteins. Current Opinion in Structural Biology, 2014, 24, 165-169.	5.7	481
11	Making ribosomes. Current Opinion in Cell Biology, 2002, 14, 313-318.	5.4	455
12	Function and synthesis of small nucleolar RNAs. Current Opinion in Cell Biology, 1997, 9, 337-342.	5.4	432
13	90S Pre-Ribosomes Include the 35S Pre-rRNA, the U3 snoRNP, and 40S Subunit Processing Factors but Predominantly Lack 60S Synthesis Factors. Molecular Cell, 2002, 10, 105-115.	9.7	427
14	The yeast exosome and human PM-Scl are related complexes of 3' right-arrow 5' exonucleases. Genes and Development, 1999, 13, 2148-2158.	5.9	402
15	Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes and Development, 2010, 24, 1546-1558.	5.9	358
16	Identification of a Regulated Pathway for Nuclear Pre-mRNA Turnover. Cell, 2000, 102, 765-775.	28.9	355
17	Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9613-9618.	7.1	322
18	The box H+ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes and Development, 1998, 12, 527-537.	5.9	316

#	Article	IF	CITATIONS
19	60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO Journal, 2002, 21, 5539-5547.	7.8	307
20	Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3' end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO Journal, 1998, 17, 1128-1140.	7.8	289
21	Identification of a 60S Preribosomal Particle that Is Closely Linked to Nuclear Export. Molecular Cell, 2001, 8, 517-529.	9.7	289
22	Nuclear Export of 60S Ribosomal Subunits Depends on Xpo1p and Requires a Nuclear Export Sequence-Containing Factor, Nmd3p, That Associates with the Large Subunit Protein Rpl10p. Molecular and Cellular Biology, 2001, 21, 3405-3415.	2.3	283
23	Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast. Proceedings of the United States of America, 2011, 108, 10010-10015.	7.1	270
24	The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO Journal, 2003, 22, 1370-1380.	7.8	264
25	A ncRNA Modulates Histone Modification and mRNA Induction in the Yeast GAL Gene Cluster. Molecular Cell, 2008, 32, 685-695.	9.7	262
26	mRNA stability in eukaryotes. Current Opinion in Genetics and Development, 2000, 10, 193-198.	3.3	259
27	Yeast Pre-rRNA Processing and Modification Occur Cotranscriptionally. Molecular Cell, 2010, 37, 809-820.	9.7	258
28	Nucleolar KKE/D Repeat Proteins Nop56P and Nop58P Interact with Nop1p and Are Required for Ribosome Biogenesis. Molecular and Cellular Biology, 1997, 17, 7088-7098.	2.3	251
29	Accurate Processing of a Eukaryotic Precursor Ribosomal RNA by Ribonuclease MRP in Vitro. Science, 1996, 272, 268-270.	12.6	246
30	E. coli 4.5S RNA is part of a ribonucleoprotein particle that has properties related to signal recognition particle. Cell, 1990, 63, 591-600.	28.9	233
31	Lithium toxicity in yeast is due to the inhibition of RNA processing enzymes. EMBO Journal, 1997, 16, 7184-7195.	7.8	233
32	Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Research, 2000, 28, 1684-1691.	14.5	216
33	Processing of pre-ribosomal RNA inSaccharomyces cerevisiae. Yeast, 1995, 11, 1629-1650.	1.7	213
34	Yeast snR30 is a small nucleolar RNA required for 18S rRNA synthesis Molecular and Cellular Biology, 1993, 13, 2469-2477.	2.3	212
35	A Transcriptome-wide Atlas of RNP Composition Reveals Diverse Classes of mRNAs and IncRNAs. Cell, 2013, 154, 996-1009.	28.9	212
36	Identification of Bacteriophage-Encoded Anti-sRNAs in Pathogenic Escherichia coli. Molecular Cell, 2014, 55, 199-213.	9.7	211

#		Article	IF	CITATIONS
37	,	Maturation and Intranuclear Transport of Pre-Ribosomes Requires Noc Proteins. Cell, 2001, 105, 499-509.	28.9	206
38	3	The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Research, 2009, 37, 1127-1140.	14.5	202
39)	Like Attracts Like: Getting RNA Processing Together in the Nucleus. Science, 2000, 288, 1385-1389.	12.6	200
40)	Processing of the Precursors to Small Nucleolar RNAs and rRNAs Requires Common Components. Molecular and Cellular Biology, 1998, 18, 1181-1189.	2.3	199
41		The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins Genes and Development, 1994, 8, 1423-1433.	5.9	198
42	2	Signal-sequence recognition by an Escherichia coli ribonucleoprotein complex. Nature, 1992, 359, 741-743.	27.8	194
48		An NMD Pathway in Yeast Involving Accelerated Deadenylation and Exosome-Mediated 3′→5′ Degradation. Molecular Cell, 2003, 11, 1405-1413.	9.7	193
44	ļ	Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature, 2006, 441, 651-655.	27.8	191
45		The function and synthesis of ribosomes. Nature Reviews Molecular Cell Biology, 2001, 2, 514-520.	37.0	190
46	5	The 3' end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism Genes and Development, 1996, 10, 502-513.	5.9	184
47		Transcriptome-wide Analysis of Exosome Targets. Molecular Cell, 2012, 48, 422-433.	9.7	184
48	}	The 18S rRNA dimethylase Dim1p is required for pre-ribosomal RNA processing in yeast Genes and Development, 1995, 9, 2470-2481.	5.9	181
49)	Genome-Wide Distribution of RNA-DNA Hybrids Identifies RNase H Targets in tRNA Genes, Retrotransposons and Mitochondria. PLoS Genetics, 2014, 10, e1004716.	3.5	179
50)	Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nature Structural and Molecular Biology, 2012, 19, 744-753.	8.2	173
51		Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends in Biochemical Sciences, 1998, 23, 383-388.	7.5	171
52	2	Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control. EMBO Journal, 2007, 26, 4996-5006.	7.8	170
58		Ssf1p Prevents Premature Processing of an Early Pre-60S Ribosomal Particle. Molecular Cell, 2002, 9, 341-351.	9.7	167
54		Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery. ELife, 2014, 3, e01641.	6.0	167

#	Article	IF	CITATIONS
55	RNA Helicase Prp43 and Its Co-factor Pfa1 Promote 20 to 18 S rRNA Processing Catalyzed by the Endonuclease Nob1. Journal of Biological Chemistry, 2009, 284, 35079-35091.	3.4	166
56	Evolutionary conservation of the human nucleolar protein fibrillarin and its functional expression in yeast Journal of Cell Biology, 1991, 113, 715-729.	5.2	163
57	The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO Journal, 2011, 30, 1790-1803.	7.8	163
58	A Novel In Vivo Assay Reveals Inhibition of Ribosomal Nuclear Export in Ran-Cycle and Nucleoporin Mutants. Journal of Cell Biology, 1999, 144, 389-401.	5.2	161
59	A cluster of ribosome synthesis factors regulate pre-rRNA folding and 5.8S rRNA maturation by the Rat1 exonuclease. EMBO Journal, 2011, 30, 4006-4019.	7.8	156
60	Functional link between ribosome formation and biogenesis of iron–sulfur proteins. EMBO Journal, 2005, 24, 580-588.	7.8	153
61	Small <scp>RNA</scp> interactome of pathogenic <i>E.Âcoli</i> revealed through crosslinking of <scp>RN</scp> ase E. EMBO Journal, 2017, 36, 374-387.	7.8	153
62	Prp43 Bound at Different Sites on the Pre-rRNA Performs Distinct Functions in Ribosome Synthesis. Molecular Cell, 2009, 36, 583-592.	9.7	152
63	mRNA turnover. Current Opinion in Cell Biology, 2001, 13, 320-325.	5.4	150
64	Processing of 3′-Extended Read-Through Transcripts by the Exosome Can Generate Functional mRNAs. Molecular Cell, 2002, 9, 1285-1296.	9.7	146
65	Yeast contains small nuclear RNAs encoded by single copy genes. Cell, 1983, 35, 743-751.	28.9	145
66	Yeast Trf5p is a nuclear poly(A) polymerase. EMBO Reports, 2006, 7, 205-211.	4.5	145
67	Yeast 18S rRNA Dimethylase Dim1p: a Quality Control Mechanism in Ribosome Synthesis?. Molecular and Cellular Biology, 1998, 18, 2360-2370.	2.3	144
68	Nob1p Is Required for Cleavage of the 3′ End of 18S rRNA. Molecular and Cellular Biology, 2003, 23, 1798-1807.	2.3	144
69	Rrp47p Is an Exosome-Associated Protein Required for the 3′ Processing of Stable RNAs. Molecular and Cellular Biology, 2003, 23, 6982-6992.	2.3	144
70	Nop58p is a common component of the box C+D snoRNPs that is required for snoRNA stability. Rna, 1999, 5, 455-467.	3.5	143
71	Synthesis and Assembly of the Box C+D Small Nucleolar RNPs. Molecular and Cellular Biology, 2000, 20, 2650-2659.	2.3	139
72	Birth of the snoRNPs: the evolution of RNase MRP and the eukaryotic pre-rRNA-processing system. Trends in Biochemical Sciences, 1995, 20, 78-82.	7.5	138

#	Article	IF	CITATIONS
73	Ribosome synthesis meets the cell cycle. Current Opinion in Microbiology, 2004, 7, 631-637.	5.1	136
74	The Exosome Subunit Rrp44 Plays a Direct Role in RNA Substrate Recognition. Molecular Cell, 2007, 27, 324-331.	9.7	135
75	Apparent Non-Canonical Trans-Splicing Is Generated by Reverse Transcriptase In Vitro. PLoS ONE, 2010, 5, e12271.	2.5	134
76	Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export. Nature, 2014, 505, 112-116.	27.8	132
77	Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3′ ETS but not the 5′ ETS. Rna, 1999, 5, 909-917.	3.5	130
78	Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 279-284.	7.1	129
79	Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing. Journal of Cell Biology, 2013, 200, 577-588.	5.2	129
80	Base Pairing between U3 Small Nucleolar RNA and the 5′ End of 18S rRNA Is Required for Pre-rRNA Processing. Molecular and Cellular Biology, 1999, 19, 6012-6019.	2.3	127
81	Precursors to the U3 Small Nucleolar RNA Lack Small Nucleolar RNP Proteins but Are Stabilized by La Binding. Molecular and Cellular Biology, 2000, 20, 5415-5424.	2.3	126
82	RNA in pieces. Trends in Genetics, 2011, 27, 422-432.	6.7	124
83	Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH). Nature Protocols, 2014, 9, 711-728.	12.0	124
84	Surveillance of nuclear-restricted pre-ribosomes within a subnucleolar region of Saccharomyces cerevisiae. EMBO Journal, 2006, 25, 1534-1546.	7.8	121
85	Threading the barrel of the RNA exosome. Trends in Biochemical Sciences, 2013, 38, 485-493.	7.5	120
86	Musing on the structural organization of the exosome complex. , 2000, 7, 843-846.		119
87	Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA–protein cross-linking. EMBO Journal, 2010, 29, 2026-2036.	7.8	119
88	Network of epistatic interactions within a yeast snoRNA. Science, 2016, 352, 840-844.	12.6	116
89	Regulation of the RNAPII Pool Is Integral to the DNA Damage Response. Cell, 2020, 180, 1245-1261.e21.	28.9	116
90	Defining the <scp>RNA</scp> interactome by total <scp>RNA</scp> â€essociated protein purification. Molecular Systems Biology, 2019, 15, e8689.	7.2	114

#	Article	IF	CITATIONS
91	NOP3 is an essential yeast protein which is required for pre-rRNA processing Journal of Cell Biology, 1992, 119, 737-747.	5.2	112
92	PIN domain of Nob1p is required for D-site cleavage in 20S pre-rRNA. Rna, 2004, 10, 1698-1701.	3.5	110
93	Cotranscriptional events in eukaryotic ribosome synthesis. Wiley Interdisciplinary Reviews RNA, 2015, 6, 129-139.	6.4	108
94	Characterization of an SNR gene locus in Saccharomyces cerevisiae that specifies both dispensible and essential small nuclear RNAs Molecular and Cellular Biology, 1988, 8, 3282-3290.	2.3	106
95	VapCs of Mycobacterium tuberculosis cleave RNAs essential for translation. Nucleic Acids Research, 2016, 44, 9860-9871.	14.5	106
96	A pre-ribosome-associated HEAT-repeat protein is required for export of both ribosomal subunits. Genes and Development, 2004, 18, 196-209.	5.9	105
97	Three Novel Components of the Human Exosome. Journal of Biological Chemistry, 2001, 276, 6177-6184.	3.4	104
98	Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel. Nature Structural and Molecular Biology, 2012, 19, 1234-1241.	8.2	103
99	Efficient termination of transcription by RNA polymerase I requires the 5′ exonuclease Rat1 in yeast. Genes and Development, 2008, 22, 1069-1081.	5.9	102
100	Small nuclear RNAs in messenger RNA and ribosomal RNA processing FASEB Journal, 1993, 7, 47-53.	0.5	98
101	Box C/D small nucleolar RNA trafficking involves small nucleolar RNP proteins, nucleolar factors and a novel nuclear domain. EMBO Journal, 2001, 20, 5480-5490.	7.8	98
102	Rok1p Is a Putative RNA Helicase Required for rRNA Processing. Molecular and Cellular Biology, 1997, 17, 3398-3407.	2.3	96
103	One-step PCR mediated strategy for the construction of conditionally expressed and epitope tagged yeast proteins. Nucleic Acids Research, 1996, 24, 3469-3471.	14.5	93
104	Mutational analysis of an essential binding site for the U3 snoRNA in the 5′ external transcribed spacer of yeast pre-rRNA. Nucleic Acids Research, 1994, 22, 5139-5147.	14.5	91
105	Fibrillarin Is Essential for Early Development and Required for Accumulation of an Intron-Encoded Small Nucleolar RNA in the Mouse. Molecular and Cellular Biology, 2003, 23, 8519-8527.	2.3	91
106	A Nuclear Surveillance Pathway for mRNAs with Defective Polyadenylation. Molecular and Cellular Biology, 2005, 25, 9996-10004.	2.3	90
107	Rio1 mediates ATP-dependent final maturation of 40S ribosomal subunits. Nucleic Acids Research, 2014, 42, 12189-12199.	14.5	90
108	Dhr1p, a Putative DEAH-Box RNA Helicase, Is Associated with the Box C+D snoRNP U3. Molecular and Cellular Biology, 2000, 20, 7238-7246.	2.3	87

#	Article	IF	CITATIONS
109	Formation and Nuclear Export of Preribosomes Are Functionally Linked to the Smallâ€Ubiquitinâ€Related Modifier Pathway. Traffic, 2006, 7, 1311-1321.	2.7	87
110	Transcription by RNA polymerase III: insights into mechanism and regulation. Biochemical Society Transactions, 2016, 44, 1367-1375.	3.4	85
111	A Yeast Exosome Cofactor, Mpp6, Functions in RNA Surveillance and in the Degradation of Noncoding RNA Transcripts. Molecular and Cellular Biology, 2008, 28, 5446-5457.	2.3	84
112	The Putative RNA Helicase Dbp4p Is Required for Release of the U14 snoRNA from Preribosomes in Saccharomyces cerevisiae. Molecular Cell, 2005, 20, 53-64.	9.7	83
113	Rrp17p Is a Eukaryotic Exonuclease Required for 5′ End Processing of Pre-60S Ribosomal RNA. Molecular Cell, 2009, 36, 768-781.	9.7	83
114	A U4-like small nuclear RNA is dispensable in yeast. Cell, 1983, 35, 753-762.	28.9	81
115	Spb4p, an essential putative RNA helicase, is required for a late step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. Rna, 1998, 4, 1268-1281.	3.5	81
116	Mex67p Mediates Nuclear Export of a Variety of RNA Polymerase II Transcripts. Journal of Biological Chemistry, 2000, 275, 8361-8368.	3.4	81
117	A nuclear AAA-type ATPase (Rix7p) is required for biogenesis and nuclear export of 60S ribosomal subunits. EMBO Journal, 2001, 20, 3695-3704.	7.8	81
118	Distinguishing the Roles of Topoisomerases I and II in Relief of Transcription-Induced Torsional Stress in Yeast rRNA Genes. Molecular and Cellular Biology, 2011, 31, 482-494.	2.3	80
119	Notes An inversion truncating the creA gene of Aspergillus niduians results in carbon catabolite derepression. Molecular Microbiology, 1990, 4, 851-854.	2.5	79
120	Genetic and Physical Interactions Involving the Yeast Nuclear Cap-Binding Complex. Molecular and Cellular Biology, 1999, 19, 6543-6553.	2.3	78
121	Pop3p is essential for the activity of the RNase MRP and RNase P ribonucleoproteins invivo. EMBO Journal, 1997, 16, 417-429.	7.8	77
122	Hyb: A bioinformatics pipeline for the analysis of CLASH (crosslinking, ligation and sequencing of) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
123	The nuclear RNA surveillance machinery: The link between ncRNAs and genome structure in budding yeast?. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 239-246.	1.9	76
124	Rlp7p is associated with 60S preribosomes, restricted to the granular component of the nucleolus, and required for pre-rRNA processing. Journal of Cell Biology, 2002, 157, 941-952.	5.2	73
125	Quantitative analysis of snoRNA association with preâ€ribosomes and release of snR30 by Rok1 helicase. EMBO Reports, 2008, 9, 1230-1236.	4.5	72

¹²⁶Formation and nuclear export of tRNA, rRNA and mRNA is regulated by the ubiquitin ligase Rsp5p.4.571EMBO Reports, 2003, 4, 1156-1162.

#	Article	IF	CITATIONS
127	Lsm Proteins Are Required for Normal Processing and Stability of Ribosomal RNAs. Journal of Biological Chemistry, 2003, 278, 2147-2156.	3.4	71
128	The DEAH-box Helicase Dhr1 Dissociates U3 from the Pre-rRNA to Promote Formation of the Central Pseudoknot. PLoS Biology, 2015, 13, e1002083.	5.6	70
129	Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. Genes and Development, 2012, 26, 2408-2421.	5.9	68
130	Trans-Acting Factors in Ribosome Synthesis. Experimental Cell Research, 1996, 229, 226-232.	2.6	67
131	A Surfeit of Factors: Why is Ribosome Assembly So Much More Complicated in Eukaryotes than Bacteria?. RNA Biology, 2004, 1, 9-14.	3.1	67
132	Microarray detection of novel nuclear RNA substrates for the exosome. Yeast, 2006, 23, 439-454.	1.7	67
133	7SL RNA from <i>Schizosaccharomyces pombe</i> is encoded by a single copy essential gene. EMBO Journal, 1988, 7, 231-237.	7.8	66
134	Yeast Pescadillo is required for multiple activities during 60S ribosomal subunit synthesis. Rna, 2002, 8, 626-636.	3.5	65
135	Rrp5 Binding at Multiple Sites Coordinates Pre-rRNA Processing and Assembly. Molecular Cell, 2013, 52, 707-719.	9.7	65
136	Naf1 p is a box H/ACA snoRNP assembly factor. Rna, 2002, 8, 1502-14.	3.5	65
137	Functional Analysis of Rrp7p, an Essential Yeast Protein Involved in Pre-rRNA Processing and Ribosome Assembly. Molecular and Cellular Biology, 1997, 17, 5023-5032.	2.3	64
138	The Final Step in 5.8S rRNA Processing Is Cytoplasmic in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 2010, 30, 976-984.	2.3	64
139	Rea1, a Dynein-related Nuclear AAA-ATPase, Is Involved in Late rRNA Processing and Nuclear Export of 60 S Subunits. Journal of Biological Chemistry, 2004, 279, 55411-55418.	3.4	63
140	UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly. Nature Communications, 2016, 7, 12090.	12.8	63
141	The role of the 3′ external transcribed spacer in yeast pre-rRNA processing. Journal of Molecular Biology, 1998, 278, 67-78.	4.2	62
142	A Pre-Ribosome with a Tadpole-like Structure Functions in ATP-Dependent Maturation of 60S Subunits. Molecular Cell, 2004, 15, 295-301.	9.7	62
143	Mutational analysis of an essential binding site for the U3 snoRNA in the 5′ external transcribed spacer of yeast pre-rRNA. Nucleic Acids Research, 1994, 22, 4057-4065.	14.5	61
144	Lsm Proteins Are Required for Normal Processing of Pre-tRNAs and Their Efficient Association with La-Homologous Protein Lhp1p. Molecular and Cellular Biology, 2002, 22, 5248-5256.	2.3	61

#	Article	IF	CITATIONS
145	Yeast Nop15p is an RNA-binding protein required for pre-rRNA processing and cytokinesis. EMBO Journal, 2003, 22, 6573-6583.	7.8	60
146	Box C/D snoRNP catalysed methylation is aided by additional pre-rRNA base-pairing. EMBO Journal, 2011, 30, 2420-2430.	7.8	59
147	Nuclear Pre-mRNA Decapping and 5′ Degradation in Yeast Require the Lsm2-8p Complex. Molecular and Cellular Biology, 2004, 24, 9646-9657.	2.3	58
148	Stress-Induced Translation Inhibition through Rapid Displacement of Scanning Initiation Factors. Molecular Cell, 2020, 80, 470-484.e8.	9.7	58
149	Nuclear RNA Decay Pathways Aid Rapid Remodeling of Gene Expression in Yeast. Molecular Cell, 2017, 65, 787-800.e5.	9.7	57
150	Identification of RNA Helicase Target Sites by UV Cross-Linking and Analysis of cDNA. Methods in Enzymology, 2012, 511, 275-288.	1.0	56
151	Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts. Genome Research, 2016, 26, 933-944.	5.5	56
152	Nop9 is an RNA binding protein present in pre-40S ribosomes and required for 18S rRNA synthesis in yeast. Rna, 2007, 13, 2165-2174.	3.5	55
153	The yeast ribosome synthesis factor Emg1 is a novel member of the superfamily of alpha/beta knot fold methyltransferases. Nucleic Acids Research, 2007, 36, 629-639.	14.5	54
154	A surfeit of factors: why is ribosome assembly so much more complicated in eukaryotes than bacteria?. RNA Biology, 2004, 1, 10-5.	3.1	54
155	Evolutionary conserved nucleotides within theE.coli4.5S RNA are required for association with P48in vitroand for optimal functionin vivo. Nucleic Acids Research, 1992, 20, 5919-5925.	14.5	53
156	An Endoribonuclease Functionally Linked to Perinuclear mRNP Quality Control Associates with the Nuclear Pore Complexes. PLoS Biology, 2009, 7, e1000008.	5.6	53
157	The PIN domain endonuclease Utp24 cleaves pre-ribosomal RNA at two coupled sites in yeast and humans. Nucleic Acids Research, 2016, 44, 5399-5409.	14.5	53
158	Final Pre-40S Maturation Depends on the Functional Integrity of the 60S Subunit Ribosomal Protein L3. PLoS Genetics, 2014, 10, e1004205.	3.5	52
159	Nascent Transcript Folding Plays a Major Role in Determining RNA Polymerase Elongation Rates. Molecular Cell, 2020, 79, 488-503.e11.	9.7	52
160	HuD Is a Neural Translation Enhancer Acting on mTORC1-Responsive Genes and Counteracted by the Y3 Small Non-coding RNA. Molecular Cell, 2018, 71, 256-270.e10.	9.7	51
161	Yeast Nucleoporin Mutants Are Defective in pre-tRNA Splicing. Molecular and Cellular Biology, 1996, 16, 294-301.	2.3	50
162	Surveillance-ready transcription: nuclear RNA decay as a default fate. Open Biology, 2018, 8, .	3.6	50

#	Article	IF	CITATIONS
163	Depletion of the Yeast Nuclear Exosome Subunit Rrp6 Results in Accumulation of Polyadenylated RNAs in a Discrete Domain within the Nucleolus. Molecular and Cellular Biology, 2007, 27, 4157-4165.	2.3	48
164	RiboSys, a high-resolution, quantitative approach to measure the in vivo kinetics of pre-mRNA splicing and 3′-end processing in <i>Saccharomyces cerevisiae</i> . Rna, 2010, 16, 2570-2580.	3.5	48
165	Strandâ€specific, highâ€resolution mapping of modified RNA polymerase II. Molecular Systems Biology, 2016, 12, 874.	7.2	46
166	The role of small nucleolar ribonucleoproteins in ribosome synthesis. Molecular Biology Reports, 1990, 14, 103-106.	2.3	45
167	The 'scavenger' m7GpppX pyrophosphatase activity of Dcs1 modulates nutrient-induced responses in yeast. Nucleic Acids Research, 2004, 32, 3590-3600.	14.5	44
168	A network of assembly factors is involved in remodeling rRNA elements during preribosome maturation. Journal of Cell Biology, 2014, 207, 481-498.	5.2	44
169	<i>Trans</i> -acting factors in yeast pre-rRNA and pre-snoRNA processing. Biochemistry and Cell Biology, 1995, 73, 803-812.	2.0	43
170	Roles of the HEAT repeat proteins Utp10 and Utp20 in 40S ribosome maturation. Rna, 2007, 13, 1516-1527.	3.5	43
171	The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO Journal, 2011, 30, 2982-2982.	7.8	43
172	Transcription factor Wilms' tumor 1 regulates developmental RNAs through 3′ UTR interaction. Genes and Development, 2017, 31, 347-352.	5.9	43
173	High level of complexity of small nuclear RNAs in fungi and plants. Journal of Molecular Biology, 1987, 196, 355-361.	4.2	42
174	Repeat expansion in the budding yeast ribosomal DNA can occur independently of the canonical homologous recombination machinery. Nucleic Acids Research, 2011, 39, 8778-8791.	14.5	42
175	A complex pathway for 3' processing of the yeast U3 snoRNA. Nucleic Acids Research, 2003, 31, 6788-6797.	14.5	40
176	Pre-40S ribosome biogenesis factor Tsr1 is an inactive structural mimic of translational GTPases. Nature Communications, 2016, 7, 11789.	12.8	40
177	Transcriptome-wide analysis of alternative routes for RNA substrates into the exosome complex. PLoS Genetics, 2017, 13, e1006699.	3.5	40
178	Yeast Rrp14p is required for ribosomal subunit synthesis and for correct positioning of the mitotic spindle during mitosis. Nucleic Acids Research, 2007, 35, 1354-1366.	14.5	39
179	3'-processing of yeast tRNATrp precedes 5'-processing. Rna, 2003, 9, 202-208.	3.5	38
180	Nop53p is required for late 60S ribosome subunit maturation and nuclear export in yeast. Rna, 2005, 11, 1215-1224.	3.5	38

#	Article	IF	CITATIONS
181	RNA Mimicry by the Fap7 Adenylate Kinase in Ribosome Biogenesis. PLoS Biology, 2014, 12, e1001860.	5.6	37
182	Building Ribosomes: Even More Expensive Than Expected?. Current Biology, 2007, 17, R415-R417.	3.9	36
183	The mRNA encoding the yeast ARE-binding protein Cth2 is generated by a novel 3′ processing pathway. Nucleic Acids Research, 2008, 36, 3075-3084.	14.5	36
184	Cic1p/Nsa3p is required for synthesis and nuclear export of 60S ribosomal subunits. Rna, 2003, 9, 1431-1436.	3.5	35
185	Termination by torpedo. Nature, 2004, 432, 456-457.	27.8	34
186	Mutations to constitutivity and derepression are separate and separable in a regulatory gene of Aspergillus nidulans. Current Genetics, 1981, 4, 63-68.	1.7	33
187	Molecular interactions between Hel2 and RNA supporting ribosome-associated quality control. Nature Communications, 2019, 10, 563.	12.8	32
188	U14 small nucleolar RNA makes multiple contacts with the pre-ribosomal RNA. Chromosoma, 1997, 105, 515-522.	2.2	31
189	RNA Binding by Histone Methyltransferases Set1 and Set2. Molecular and Cellular Biology, 2017, 37, .	2.3	31
190	RNA lost in translation. Nature, 2006, 440, 425-426.	27.8	29
191	Domain-wide, locus-specific suppression of nitrogen metabolite repressed mutations in Aspergillus nidulans. Current Genetics, 1982, 6, 79-85.	1.7	28
192	Ribosome maturation by the endoribonuclease YbeY stabilizes a type 3 secretion system transcript required for virulence of enterohemorrhagic Escherichia coli. Journal of Biological Chemistry, 2018, 293, 9006-9016.	3.4	27
193	Sen34p depletion blocks tRNA splicing in vivo and delays rRNA processing. Biochemical and Biophysical Research Communications, 2005, 337, 89-94.	2.1	25
194	Substrate specificity of the TRAMP nuclear surveillance complexes. Nature Communications, 2020, 11, 3122.	12.8	25
195	Insights into the structure and function of a guide RNP. Nature Structural and Molecular Biology, 2003, 10, 237-239.	8.2	24
196	Kinetic Analysis Demonstrates a Requirement for the Rat1 Exonuclease in Cotranscriptional Pre-rRNA Cleavage. PLoS ONE, 2014, 9, e85703.	2.5	24
197	Loss of the Yeast SR Protein Npl3 Alters Gene Expression Due to Transcription Readthrough. PLoS Genetics, 2015, 11, e1005735.	3.5	23
198	Kinetic analysis of pre-ribosome structure in vivo. Rna, 2012, 18, 2187-2200.	3.5	22

#	Article	IF	CITATIONS
199	A translocation associated, loss-of-function mutation in the nitrogen metabolite repression regulatory gene of Aspergillus nidulans can revert intracistronically. Molecular Genetics and Genomics, 1989, 215, 364-367.	2.4	21
200	Cloning of Schizosaccharomyces pombe genes encoding the U1, U2, U3 and U4 snRNAs. Gene, 1989, 81, 227-235.	2.2	21
201	A disease-linked lncRNA mutation in RNase MRP inhibits ribosome synthesis. Nature Communications, 2022, 13, 649.	12.8	21
202	Two genes encode 7SL RNAs in the yeast Yarrowia lipolytica. Current Genetics, 1989, 16, 347-350.	1.7	20
203	RNA Processing Marches on. Cell, 2000, 103, 703-709.	28.9	19
204	An RNA-dependent mechanism for transient expression of bacterial translocation filaments. Nucleic Acids Research, 2018, 46, 3366-3381.	14.5	19
205	Schizosaccharomyces pombe U4 small nuclear RNA closely resembles vertebrate U4 and is required for growth. Journal of Molecular Biology, 1989, 208, 371-379.	4.2	18
206	Multiple RNA interactions position Mrd1 at the site of the small subunit pseudoknot within the 90S pre-ribosome. Nucleic Acids Research, 2013, 41, 1178-1190.	14.5	18
207	Mapping targets for small nucleolar RNAs in yeast. Wellcome Open Research, 2018, 3, 120.	1.8	18
208	Genetic and biochemical analyses of yeast RNase MRP. Molecular Biology Reports, 1996, 22, 75-79.	2.3	16
209	RNA polymerase II stalling at pre-mRNA splice sites is enforced by ubiquitination of the catalytic subunit. ELife, 2017, 6, .	6.0	16
210	The 5â€ 2 end of the 18S rRNA can be positioned from within the mature rRNA. Rna, 1999, 5, 678-686.	3.5	15
211	The Noc proteins involved in ribosome synthesis and export contain divergent HEAT repeats. Rna, 2004, 10, 351-354.	3.5	15
212	The expression of Rpb10, a small subunit common to RNA polymerases, is modulated by the R3H domain-containing Rbs1 protein and the Upf1 helicase. Nucleic Acids Research, 2020, 48, 12252-12268.	14.5	15
213	Identification and functional analysis of a novel yeast small nucleolar RNA. Nucleic Acids Research, 1993, 21, 5386-5390.	14.5	14
214	FLIPing heterokaryons to analyze nucleo-cytoplasmic shuttling of yeast proteins. Rna, 2006, 12, 921-930.	3.5	14
215	Imaging the migrating border cell cluster in living <i>Drosophila</i> egg chambers. Developmental Dynamics, 2007, 236, 2818-2824.	1.8	14
216	Synergistic defects in pre-rRNA processing from mutations in the U3-specific protein Rrp9 and U3 snoRNA. Nucleic Acids Research, 2020, 48, 3848-3868.	14.5	14

#	Article	IF	CITATIONS
217	Yeast Ssd1 is a non-enzymatic member of the RNase II family with an alternative RNA recognition site. Nucleic Acids Research, 2022, 50, 2923-2937.	14.5	13
218	Structure and function of signal recognition particle (SRP). Molecular Biology Reports, 1990, 14, 71-72.	2.3	11
219	NANOS2 is a sequence-specific mRNA-binding protein that promotes transcript degradation in spermatogonial stem cells. IScience, 2021, 24, 102762.	4.1	11
220	Identification of miRNA-Target RNA Interactions Using CLASH. Methods in Molecular Biology, 2016, 1358, 229-251.	0.9	10
221	High-Resolution, High-Throughput Analysis of Hfq-Binding Sites Using UV Crosslinking and Analysis of cDNA (CRAC). Methods in Molecular Biology, 2018, 1737, 251-272.	0.9	10
222	Thirty-three nucleotides of 5' flanking sequence including the 'TATA' box are necessary and sufficient for efficient U2 snRNA transcription in Schizosaccharomyces pombe. Molecular Microbiology, 1991, 5, 1621-1625.	2.5	9
223	Looking into the barrel of the RNA exosome. Nature Structural and Molecular Biology, 2014, 21, 17-18.	8.2	9
224	Crosstalk between RNA metabolic pathways: an RNOMICS approach. Nature Reviews Molecular Cell Biology, 2005, 6, 423-429.	37.0	8
225	Inactivation of Cleavage Factor I Components Rna14p and Rna15p Induces Sequestration of Small Nucleolar Ribonucleoproteins at Discrete Sites in the Nucleus. Molecular Biology of the Cell, 2008, 19, 1499-1508.	2.1	8
226	Regulatory Aspects of rRNA Modification and Pre-rRNA Processing. , 2014, , 281-288.		8
227	RNA surveillance and the exosome. Rna, 2015, 21, 492-493.	3.5	8
228	High density of unrepaired genomic ribonucleotides leads to Topoisomerase 1-mediated severe growth defects in absence of ribonucleotide reductase. Nucleic Acids Research, 2020, 48, 4274-4297.	14.5	8
229	Tailing Off: PABP and CNOT Generate Cycles of mRNA Deadenylation. Molecular Cell, 2018, 70, 987-988.	9.7	8
230	Mutational analysis ofSchizosaccharomyces pombe U4 snRNA by plasmid exchange. Yeast, 1992, 8, 647-653.	1.7	7
231	A complex interplay of positive and negative elements is responsible for the different transcriptional activity of liver NF1 variants. Molecular Biology Reports, 1995, 21, 147-158.	2.3	7
232	Integrity of SRP RNA is ensured by La and the nuclear RNA quality control machinery. Nucleic Acids Research, 2014, 42, 10698-10710.	14.5	7
233	Transcriptome-Wide Analysis of Protein–RNA and RNA–RNA Interactions in Pathogenic Bacteria. Methods in Enzymology, 2018, 612, 467-488.	1.0	7
234	Mapping targets for small nucleolar RNAs in yeast. Wellcome Open Research, 2018, 3, 120.	1.8	7

#	Article	IF	CITATIONS
235	Immunoprecipitation distinguishes non-overlapping groups of snRNPs inSchizosaccharomyces pombe. Nucleic Acids Research, 1990, 18, 5207-5212.	14.5	6
236	Modelling co-transcriptional cleavage in the synthesis of yeast pre-rRNA. Theoretical Computer Science, 2008, 408, 41-54.	0.9	6
237	RNA substrate length as an indicator of exosome interactions in vivo. Wellcome Open Research, 2017, 2, 34.	1.8	6
238	U14 small nucleolar RNA makes multiple contacts with the pre-ribosomal RNA. Chromosoma, 1997, 105, 515-522.	2.2	5
239	Finding the Exosome. Advances in Experimental Medicine and Biology, 2010, 702, 1-8.	1.6	4
240	Immunoprecipitation of RNA:DNA Hybrids from Budding Yeast. Methods in Molecular Biology, 2018, 1703, 109-129.	0.9	4
241	Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro. Nature Precedings, 2010, , .	0.1	3
242	Motoring toward pre-60S-ribosome export. Nature Structural and Molecular Biology, 2016, 23, 3-4.	8.2	3
243	Modelling Yeast Pre-rRNA Processing. Lecture Notes in Computer Science, 2007, , 32-47.	1.3	3
244	RNA substrate length as an indicator of exosome interactions in vivo. Wellcome Open Research, 0, 2, 34.	1.8	3
245	Mutational analysis of an essential binding site for the U3 snoRNA in the 5′ external transcribed spacer of yeast pre-rRNA. Nucleic Acids Research, 1994, 22, 5138-5138.	14.5	2
246	An RNA Reset Button. Molecular Cell, 2012, 45, 435-436.	9.7	2
247	Surveillance of nuclear-restricted pre-ribosomes within a subnucleolar region of Saccharomyces cerevisiae. EMBO Journal, 2006, 25, 2662-2662.	7.8	1
248	Lighting Up pre-mRNA Recognition. Molecular Cell, 2014, 55, 649-651.	9.7	1
249	Extended ncRNAs Interfere with Promoter Nucleosome Dynamics. Trends in Genetics, 2020, 36, 637-639.	6.7	1
250	Making ribosome. Biochemical Society Transactions, 2002, 30, A19-A19.	3.4	0
251	Mapping Exosome–Substrate Interactions In Vivo by UV Cross-Linking. Methods in Molecular Biology, 2020, 2062, 105-126.	0.9	0
252	Functions of Long Non-Coding RNAs in Non-mammalian Systems. , 2013, , 137-162.		0

#	Article	IF	CITATIONS
253	Integrative vectors for regulated expression of SARS-CoV-2 proteins implicated in RNA metabolism. Wellcome Open Research, 2020, 5, 261.	1.8	0